## 1 Propositional Practice

Note 1
Convert the following English sentences into propositional logic and the following propositions into English. State whether or not each statement is true with brief justification.
(a) There is a real number which is not rational.
(b) All integers are natural numbers or are negative, but not both.
(c) If a natural number is divisible by 6 , it is divisible by 2 or it is divisible by 3 .
(d) $(\forall x \in \mathbb{Z})(x \in \mathbb{Q})$
(e) $(\forall x \in \mathbb{Z})(((2 \mid x) \vee(3 \mid x)) \Longrightarrow(6 \mid x))$
(f) $(\forall x \in \mathbb{N})((x>7) \Longrightarrow((\exists a, b \in \mathbb{N})(a+b=x)))$

## 2 Truth Tables

Determine whether the following equivalences hold, by writing out truth tables. Clearly state whether or not each pair is equivalent.
(a) $P \wedge(Q \vee P) \equiv P \wedge Q$
(b) $(P \vee Q) \wedge R \equiv(P \wedge R) \vee(Q \wedge R)$
(c) $(P \wedge Q) \vee R \equiv(P \vee R) \wedge(Q \vee R)$

## 3 Implication

Note 0
Note 1

Which of the following implications are always true, regardless of $P$ ? Give a counterexample for each false assertion (i.e. come up with a statement $P(x, y)$ that would make the implication false).
(a) $\forall x \forall y P(x, y) \Longrightarrow \forall y \forall x P(x, y)$.
(b) $\forall x \exists y P(x, y) \Longrightarrow \exists y \forall x P(x, y)$.
(c) $\exists x \forall y P(x, y) \Longrightarrow \forall y \exists x P(x, y)$.

