CS 70Discrete Mathematics and Probability TheoryFall 2023Rao, TalDIS 1A

1 XOR

Note 2

The truth table of XOR (denoted by \oplus) is as follows.

A	В	$A \oplus B$
F	F	F
F	Т	Т
Т	F	Т
Т	Т	F

- (a) Express XOR using only (\wedge,\vee,\neg) and parentheses.
- (b) Does $(A \oplus B)$ imply $(A \lor B)$? Explain briefly.
- (c) Does $(A \lor B)$ imply $(A \oplus B)$? Explain briefly.

2 Proof Practice

(a) Prove that $\forall n \in \mathbb{N}$, if *n* is odd, then $n^2 + 1$ is even. (Recall that *n* is odd if n = 2k + 1 for some natural number *k*.)

(b) Prove that $\forall x, y \in \mathbb{R}$, $\min(x, y) = (x + y - |x - y|)/2$. (Recall, that the definition of absolute value for a real number *z*, is

$$|z| = \begin{cases} z, & z \ge 0\\ -z, & z < 0 \end{cases}$$

(c) Suppose $A \subseteq B$. Prove $\mathscr{P}(A) \subseteq \mathscr{P}(B)$. (Recall that $A' \in \mathscr{P}(A)$ if and only if $A' \subseteq A$.)

3 Numbers of Friends

Note 2

Prove that if there are $n \ge 2$ people at a party, then at least 2 of them have the same number of friends at the party. Assume that friendships are always reciprocated: that is, if Alice is friends with Bob, then Bob is also friends with Alice.

(Hint: The Pigeonhole Principle states that if *n* items are placed in *m* containers, where n > m, at least one container must contain more than one item. You may use this without proof.)

4 Preserving Set Operations

Note 0 Note 2

For a function *f*, define the image of a set *X* to be the set $f(X) = \{y \mid y = f(x) \text{ for some } x \in X\}$. Define the inverse image or preimage of a set *Y* to be the set $f^{-1}(Y) = \{x \mid f(x) \in Y\}$. Prove the following statements, in which *A* and *B* are sets.

Recall: For sets X and Y, X = Y if and only if $X \subseteq Y$ and $Y \subseteq X$. To prove that $X \subseteq Y$, it is sufficient to show that $(\forall x) \ ((x \in X) \implies (x \in Y))$.

(a) $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$.

(b) $f(A \cup B) = f(A) \cup f(B)$.