1 XOR

The truth table of XOR (denoted by \oplus) is as follows.

A	B	$A \oplus B$
F	F	F
F	T	T
T	F	T
T	T	F

(a) Express XOR using only (\wedge, \vee, \neg) and parentheses.
(b) Does $(A \oplus B)$ imply $(A \vee B)$? Explain briefly.
(c) Does $(A \vee B)$ imply $(A \oplus B)$? Explain briefly.

2 Proof Practice

(a) Prove that $\forall n \in \mathbb{N}$, if n is odd, then $n^{2}+1$ is even. (Recall that n is odd if $n=2 k+1$ for some natural number k.)
(b) Prove that $\forall x, y \in \mathbb{R}, \min (x, y)=(x+y-|x-y|) / 2$. (Recall, that the definition of absolute value for a real number z, is

$$
|z|= \begin{cases}z, & z \geq 0 \\ -z, & z<0\end{cases}
$$

(c) Suppose $A \subseteq B$. Prove $\mathscr{P}(A) \subseteq \mathscr{P}(B)$. (Recall that $A^{\prime} \in \mathscr{P}(A)$ if and only if $A^{\prime} \subseteq A$.)

3 Numbers of Friends

Note 2 Prove that if there are $n \geq 2$ people at a party, then at least 2 of them have the same number of friends at the party. Assume that friendships are always reciprocated: that is, if Alice is friends with Bob, then Bob is also friends with Alice.
(Hint: The Pigeonhole Principle states that if n items are placed in m containers, where $n>m$, at least one container must contain more than one item. You may use this without proof.)

4 Preserving Set $O_{\text {perations }}$

Note 0
Note 2

For a function f, define the image of a set X to be the set $f(X)=\{y \mid y=f(x)$ for some $x \in X\}$. Define the inverse image or preimage of a set Y to be the set $f^{-1}(Y)=\{x \mid f(x) \in Y\}$. Prove the following statements, in which A and B are sets.
Recall: For sets X and $Y, X=Y$ if and only if $X \subseteq Y$ and $Y \subseteq X$. To prove that $X \subseteq Y$, it is sufficient to show that $(\forall x)((x \in X) \Longrightarrow(x \in Y))$.
(a) $f^{-1}(A \cup B)=f^{-1}(A) \cup f^{-1}(B)$.
(b) $f(A \cup B)=f(A) \cup f(B)$.

