1 Natural Induction on Inequality

Prove that if $n \in \mathbb{N}$ and $x>0$, then $(1+x)^{n} \geq 1+n x$.

2 Make It Stronger

Suppose that the sequence a_{1}, a_{2}, \ldots is defined by $a_{1}=1$ and $a_{n+1}=3 a_{n}^{2}$ for $n \geq 1$. We want to prove that

$$
a_{n} \leq 3^{\left(2^{n}\right)}
$$

for every positive integer n.
(a) Suppose that we want to prove this statement using induction. Can we let our inductive hypothesis be simply $a_{n} \leq 3^{\left(2^{n}\right)}$? Attempt an induction proof with this hypothesis to show why this does not work.
(b) Try to instead prove the statement $a_{n} \leq 3^{\left(2^{n}-1\right)}$ using induction.
(c) Why does the hypothesis in part (b) imply the overall claim?

3 Binary Numbers

Prove that every positive integer n can be written in binary. In other words, prove that for any positive integer n, we can write

$$
n=c_{k} \cdot 2^{k}+c_{k-1} \cdot 2^{k-1}+\cdots+c_{1} \cdot 2^{1}+c_{0} \cdot 2^{0}
$$

for some $k \in \mathbb{N}$ and $c_{i} \in\{0,1\}$ for all $i \leq k$.

4 Fibonacci for Home

Recall, the Fibonacci numbers, defined recursively as
$F_{1}=1, F_{2}=1$, and $F_{n}=F_{n-2}+F_{n-1}$.
Prove that every third Fibonacci number is even. For example, $F_{3}=2$ is even and $F_{6}=8$ is even.

