1 CS70: The Musical

Edward, one of the previous head TA's, has been hard at work on his latest project, CS70: The Musical. It's now time for him to select a cast, crew, and directing team to help him make his dream a reality.
(a) First, Edward would like to select directors for his musical. He has received applications from $2 n$ directors. Use this to provide a combinatorial argument that proves the following identity:

$$
\binom{2 n}{2}=2\binom{n}{2}+n^{2}
$$

(b) Edward would now like to select a crew out of n people. Use this to provide a combinatorial argument that proves the following identity: (this is called Pascal's Identity)

$$
\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k} .
$$

(c) There are n actors lined up outside of Edward's office, and they would like a role in the musical (including a lead role). However, he is unsure of how many individuals he would like to cast. Use this to provide a combinatorial argument that proves the following identity:

$$
\sum_{k=1}^{n} k\binom{n}{k}=n 2^{n-1}
$$

(d) Generalizing the previous part, provide a combinatorial argument that proves the following identity:

$$
\sum_{k=j}^{n}\binom{n}{k}\binom{k}{j}=2^{n-j}\binom{n}{j} .
$$

2 Inclusion and Exclusion

What is the total number of positive integers strictly less than 100 that are also coprime to 100 ?

3 Countability: True or False

(a) The set of all irrational numbers $\mathbb{R} \backslash \mathbb{Q}$ (i.e. real numbers that are not rational) is uncountable.
(b) The set of integers x that solve the equation $3 x \equiv 2(\bmod 10)$ is countably infinite.
(c) The set of real solutions for the equation $x+y=1$ is countable.

For any two functions $f: Y \rightarrow Z$ and $g: X \rightarrow Y$, let their composition $f \circ g: X \rightarrow Z$ be given by $(f \circ g)(x)=$ $f(g(x))$ for all $x \in X$. Determine if the following statements are true or false.
(d) f and g are injective (one-to-one) $\Longrightarrow f \circ g$ is injective (one-to-one).
(e) f is surjective (onto) $\Longrightarrow f \circ g$ is surjective (onto).

4 Counting Cartesian Products

For two sets A and B, define the cartesian product as $A \times B=\{(a, b): a \in A, b \in B\}$.
(a) Given two countable sets A and B, prove that $A \times B$ is countable.
(b) Given a finite number of countable sets $A_{1}, A_{2}, \ldots, A_{n}$, prove that

$$
A_{1} \times A_{2} \times \cdots \times A_{n}
$$

is countable.
(c) Consider a countably infinite number of finite sets: B_{1}, B_{2}, \ldots for which each set has at least 2 elements. Prove that $B_{1} \times B_{2} \times \cdots$ is uncountable.

