CS $70 \quad$ Discrete Mathematics and Probability Theory
Fall 2023 Tal, Rao

1 Probabilistic Bounds

A random variable X has variance $\operatorname{Var}(X)=9$ and expectation $\mathbb{E}[X]=2$. Furthermore, the value of X is never greater than 10 . Given this information, provide either a proof or a counterexample for the following statements.
(a) $\mathbb{E}\left[X^{2}\right]=13$.
(b) $\mathbb{P}[X=2]>0$.
(c) $\mathbb{P}[X \geq 2]=\mathbb{P}[X \leq 2]$.
(d) $\mathbb{P}[X \leq 1] \leq 8 / 9$.
(e) $\mathbb{P}[X \geq 6] \leq 9 / 16$.

2 Vegas

On the planet Vegas, everyone carries a coin. Many people are honest and carry a fair coin (heads on one side and tails on the other), but a fraction p of them cheat and carry a trick coin with heads on both sides. You want to estimate p with the following experiment: you pick a random sample of n people and ask each one to flip their coin. Assume that each person is independently likely to carry a fair or a trick coin.
(a) Let X be the proportion of coin flips which are heads. Find $\mathbb{E}[X]$.
(b) Given the results of your experiment, how should you estimate p ? (Hint: Construct an unbiased estimator for p using part (a). Recall that \hat{p} is an unbiased estimator if $\mathbb{E}[\hat{p}]=p$.)
(c) How many people do you need to ask to be 95% sure that your answer is off by at most 0.05 ?

3 Working with the Law of Large Numbers

(a) A fair coin is tossed multiple times and you win a prize if there are more than 60% heads. Which number of tosses would you prefer: 10 tosses or 100 tosses? Explain.
(b) A fair coin is tossed multiple times and you win a prize if there are more than 40% heads. Which number of tosses would you prefer: 10 tosses or 100 tosses? Explain.
(c) A fair coin is tossed multiple times and you win a prize if there are between 40% and 60% heads. Which number of tosses would you prefer: 10 tosses or 100 tosses? Explain.
(d) A fair coin is tossed multiple times and you win a prize if there are exactly 50% heads. Which number of tosses would you prefer: 10 tosses or 100 tosses? Explain.

