CS $70 \quad$ Discrete Mathematics and Probability Theory

1 LLSE

We have two bags of balls. The fractions of red balls and blue balls in bag A are $2 / 3$ and $1 / 3$ respectively. The fractions of red balls and blue balls in bag B are $1 / 2$ and $1 / 2$ respectively. Someone gives you one of the bags (unmarked) uniformly at random. You then draw 6 balls from that same bag with replacement. Let X_{i} be the indicator random variable that ball i is red. Now, let us define $X=\sum_{1 \leq i \leq 3} X_{i}$ and $Y=\sum_{4 \leq i \leq 6} X_{i}$.
(a) Compute $\mathbb{E}[X]$ and $\mathbb{E}[Y]$.
(b) Compute $\operatorname{Var}(X)$.
(c) Compute $\operatorname{cov}(X, Y)$. (Hint: Recall that covariance is bilinear.)
(d) Now, we are going to try and predict Y from a value of X. Compute $L(Y \mid X)$, the best linear estimator of Y given X. Recall that

$$
L(Y \mid X)=\mathbb{E}[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{Var}(X)}(X-\mathbb{E}[X])
$$

2 Balls in Bins Estimation

We throw $n>0$ balls into $m \geq 2$ bins. Let X and Y represent the number of balls that land in bin 1 and 2 respectively.
(a) Calculate $\mathbb{E}[Y \mid X]$. [Hint: Your intuition may be more useful than formal calculations.]
(b) What is $L[Y \mid X]$ (where $L[Y \mid X]$ is the best linear estimator of Y given X)? [Hint: Your justification should be no more than two or three sentences, no calculations necessary! Think carefully about the meaning of the conditional expectation.]
(c) Unfortunately, your friend is not convinced by your answer to the previous part. Compute $\mathbb{E}[X]$ and $\mathbb{E}[Y]$.
(d) Compute $\operatorname{Var}(X)$.
(e) Compute $\operatorname{cov}(X, Y)$.
(f) Compute $L[Y \mid X]$ using the formula. Ensure that your answer is the same as your answer to part (b).

3 Number of Ones

In this problem, we will revisit dice-rolling, except with conditional expectation. (Hint: for both of these subparts, the law of total expectation may be helpful.)
(a) If we roll a die until we see a 6 , how many ones should we expect to see?
(b) If we roll a die until we see a number greater than 3 , how many ones should we expect to see?

