RSA System.

RSA (Rivest, Shamir, and Adleman)
${ }^{1}$ Typically small, say $e=3$.

RSA System.

RSA (Rivest, Shamir, and Adleman)
Let $N=p q$ for primes p and q.
${ }^{1}$ Typically small, say $e=3$.

RSA System.

RSA (Rivest, Shamir, and Adleman)
Let $N=p q$ for primes p and q.
Find e with $\operatorname{gcd}((p-1)(q-1), e)=1 .{ }^{1}$
${ }^{1}$ Typically small, say $e=3$.

RSA System.

RSA (Rivest, Shamir, and Adleman)
Let $N=p q$ for primes p and q.
Find e with $\operatorname{gcd}((p-1)(q-1), e)=1 .{ }^{1}$
Compute $d=e^{-1} \bmod (p-1)(q-1)$.
${ }^{1}$ Typically small, say $e=3$.

RSA System.

RSA (Rivest, Shamir, and Adleman)
Let $N=p q$ for primes p and q.
Find e with $\operatorname{gcd}((p-1)(q-1), e)=1 .{ }^{1}$
Compute $d=e^{-1} \bmod (p-1)(q-1)$.
Announce $N(=p \cdot q)$ and $e: K=(N, e)$ is my public key!
${ }^{1}$ Typically small, say $e=3$.

RSA System.

RSA (Rivest, Shamir, and Adleman)
Let $N=p q$ for primes p and q.
Find e with $\operatorname{gcd}((p-1)(q-1), e)=1 .{ }^{1}$
Compute $d=e^{-1} \bmod (p-1)(q-1)$.
Announce $N(=p \cdot q)$ and $e: K=(N, e)$ is my public key!
Encoding: $\bmod \left(x^{e}, N\right)$.

RSA System.

RSA (Rivest, Shamir, and Adleman)
Let $N=p q$ for primes p and q.
Find e with $\operatorname{gcd}((p-1)(q-1), e)=1 .{ }^{1}$
Compute $d=e^{-1} \bmod (p-1)(q-1)$.
Announce $N(=p \cdot q)$ and $e: K=(N, e)$ is my public key!
Encoding: $\bmod \left(x^{e}, N\right)$.
Decoding: $\bmod \left(y^{d}, N\right)$.
${ }^{1}$ Typically small, say $e=3$.

RSA System.

RSA (Rivest, Shamir, and Adleman)
Let $N=p q$ for primes p and q.
Find e with $\operatorname{gcd}((p-1)(q-1), e)=1 .{ }^{1}$
Compute $d=e^{-1} \bmod (p-1)(q-1)$.
Announce $N(=p \cdot q)$ and $e: K=(N, e)$ is my public key!
Encoding: $\bmod \left(x^{e}, N\right)$.
Decoding: $\bmod \left(y^{d}, N\right)$.
Does $D(E(m))=m^{e d}=m \bmod N$?
${ }^{1}$ Typically small, say $e=3$.

RSA System.

RSA (Rivest, Shamir, and Adleman)
Let $N=p q$ for primes p and q.
Find e with $\operatorname{gcd}((p-1)(q-1), e)=1 .{ }^{1}$
Compute $d=e^{-1} \bmod (p-1)(q-1)$.
Announce $N(=p \cdot q)$ and $e: K=(N, e)$ is my public key!
Encoding: $\bmod \left(x^{e}, N\right)$.
Decoding: $\bmod \left(y^{d}, N\right)$.
Does $D(E(m))=m^{e d}=m \bmod N$? Yes!
${ }^{1}$ Typically small, say $e=3$.

RSA System.

RSA (Rivest, Shamir, and Adleman)
Let $N=p q$ for primes p and q.
Find e with $\operatorname{gcd}((p-1)(q-1), e)=1 .{ }^{1}$
Compute $d=e^{-1} \bmod (p-1)(q-1)$.
Announce $N(=p \cdot q)$ and $e: K=(N, e)$ is my public key!
Encoding: $\bmod \left(x^{e}, N\right)$.
Decoding: $\bmod \left(y^{d}, N\right)$.
Does $D(E(m))=m^{e d}=m \bmod N$? Yes!
Proof (sketch):
${ }^{1}$ Typically small, say $e=3$.

RSA System.

RSA (Rivest, Shamir, and Adleman)
Let $N=p q$ for primes p and q.
Find e with $\operatorname{gcd}((p-1)(q-1), e)=1 .{ }^{1}$
Compute $d=e^{-1} \bmod (p-1)(q-1)$.
Announce $N(=p \cdot q)$ and $e: K=(N, e)$ is my public key!
Encoding: $\bmod \left(x^{e}, N\right)$.
Decoding: $\bmod \left(y^{d}, N\right)$.
Does $D(E(m))=m^{e d}=m \bmod N$? Yes!
Proof (sketch):
$m^{e d}-m=m^{k(p-1)(q-1)}-m=0 \bmod p$.

[^0]
RSA System.

RSA (Rivest, Shamir, and Adleman)
Let $N=p q$ for primes p and q.
Find e with $\operatorname{gcd}((p-1)(q-1), e)=1 .{ }^{1}$
Compute $d=e^{-1} \bmod (p-1)(q-1)$.
Announce $N(=p \cdot q)$ and $e: K=(N, e)$ is my public key!
Encoding: $\bmod \left(x^{e}, N\right)$.
Decoding: $\bmod \left(y^{d}, N\right)$.
Does $D(E(m))=m^{e d}=m \bmod N$? Yes!
Proof (sketch):
$m^{e d}-m=m^{k(p-1)(q-1)}-m=0 \bmod p$. by Fermat.

[^1]
RSA System.

RSA (Rivest, Shamir, and Adleman)
Let $N=p q$ for primes p and q.
Find e with $\operatorname{gcd}((p-1)(q-1), e)=1 .{ }^{1}$
Compute $d=e^{-1} \bmod (p-1)(q-1)$.
Announce $N(=p \cdot q)$ and $e: K=(N, e)$ is my public key!
Encoding: $\bmod \left(x^{e}, N\right)$.
Decoding: $\bmod \left(y^{d}, N\right)$.
Does $D(E(m))=m^{e d}=m \bmod N$? Yes!
Proof (sketch):
$m^{e d}-m=m^{k(p-1)(q-1)}-m=0 \bmod p$. by Fermat.
Divisible by p (and q)/

[^2]
RSA System.

RSA (Rivest, Shamir, and Adleman)
Let $N=p q$ for primes p and q.
Find e with $\operatorname{gcd}((p-1)(q-1), e)=1 .{ }^{1}$
Compute $d=e^{-1} \bmod (p-1)(q-1)$.
Announce $N(=p \cdot q)$ and $e: K=(N, e)$ is my public key!
Encoding: $\bmod \left(x^{e}, N\right)$.
Decoding: $\bmod \left(y^{d}, N\right)$.
Does $D(E(m))=m^{e d}=m \bmod N$? Yes!
Proof (sketch):
$m^{e d}-m=m^{k(p-1)(q-1)}-m=0 \bmod p$. by Fermat.
Divisible by p (and q)/
implies $m^{k(p-1)(q-1)}-m=0 \bmod p q$.

[^3]
RSA System.

RSA (Rivest, Shamir, and Adleman)
Let $N=p q$ for primes p and q.
Find e with $\operatorname{gcd}((p-1)(q-1), e)=1 .{ }^{1}$
Compute $d=e^{-1} \bmod (p-1)(q-1)$.
Announce $N(=p \cdot q)$ and $e: K=(N, e)$ is my public key!
Encoding: $\bmod \left(x^{e}, N\right)$.
Decoding: $\bmod \left(y^{d}, N\right)$.
Does $D(E(m))=m^{e d}=m \bmod N$? Yes!
Proof (sketch):
$m^{e d}-m=m^{k(p-1)(q-1)}-m=0 \bmod p$. by Fermat.
Divisible by p (and q)/
implies $m^{k(p-1)(q-1)}-m=0 \bmod p q$.
(which is)

$$
m^{e d}=m \quad \bmod p q
$$

[^4]
Signatures using RSA.

Verisign:

Signatures using RSA.

Verisign:

Amazon Browser.

Certificate Authority: Verisign, GoDaddy, DigiNotar,...

Signatures using RSA.

Verisign: k_{v}, K_{v}

Amazon Browser.
Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign's key: $K_{V}=(N, e)$ and $k_{V}=d(N=p q$.)

Signatures using RSA.

Verisign: k_{v}, K_{v}

Amazon Browser. K_{v}
Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign's key: $K_{V}=(N, e)$ and $k_{V}=d(N=p q$.)
Browser "knows" Verisign's public key: K_{V}.

Signatures using RSA.

Verisign: k_{v}, K_{v}

Amazon

 Browser. K_{v}Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign's key: $K_{V}=(N, e)$ and $k_{V}=d(N=p q$.)
Browser "knows" Verisign's public key: K_{V}.
Amazon Certificate: $C=$ "I am Amazon. My public Key is K_{A}."

Signatures using RSA.

Verisign: k_{v}, K_{v}

$\left[C, S_{v}(C)\right]$

Amazon

Browser. K_{v}

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign's key: $K_{V}=(N, e)$ and $k_{V}=d(N=p q$.)
Browser "knows" Verisign's public key: K_{V}.
Amazon Certificate: $C=$ "I am Amazon. My public Key is K_{A}."
Versign signature of $C: S_{v}(C): D\left(C, k_{V}\right)=C^{d} \bmod N$.

Signatures using RSA.

Verisign: k_{v}, K_{v}

$\left[C, S_{v}(C)\right]$

$$
\left[C, S_{v}(C)\right]
$$

Amazon

Browser. K_{v}

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign's key: $K_{V}=(N, e)$ and $k_{V}=d(N=p q$.)
Browser "knows" Verisign's public key: K_{V}.
Amazon Certificate: $C=$ "I am Amazon. My public Key is K_{A}."
Versign signature of $C: S_{v}(C): D\left(C, k_{V}\right)=C^{d} \bmod N$.

Signatures using RSA.

Verisign: k_{v}, K_{v}

$\left[C, S_{v}(C)\right]$

$\left[C, S_{v}(C)\right]$

Amazon

 Browser. K_{v}Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign's key: $K_{V}=(N, e)$ and $k_{V}=d(N=p q$.)
Browser "knows" Verisign's public key: K_{V}.
Amazon Certificate: $C=$ "I am Amazon. My public Key is K_{A}."
Versign signature of $C: S_{v}(C): D\left(C, k_{V}\right)=C^{d} \bmod N$.
Browser receives: [C, y]

Signatures using RSA.

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign's key: $K_{V}=(N, e)$ and $k_{V}=d(N=p q$.)
Browser "knows" Verisign's public key: K_{V}.
Amazon Certificate: $C=$ "I am Amazon. My public Key is K_{A}."
Versign signature of $C: S_{v}(C): D\left(C, k_{V}\right)=C^{d} \bmod N$.
Browser receives: [C, y]
Checks $E\left(y, K_{V}\right)=C$?

Signatures using RSA.

Verisign: k_{v}, K_{v}

$\left[C, S_{v}(C)\right]$

$$
C=E\left(S_{V}(C), k_{V}\right) ?
$$

[$C, S_{v}(C)$]

Amazon

Browser. K_{v}

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign's key: $K_{V}=(N, e)$ and $k_{V}=d(N=p q$.)
Browser "knows" Verisign's public key: K_{V}.
Amazon Certificate: $C=$ "I am Amazon. My public Key is K_{A}."
Versign signature of $C: S_{v}(C): D\left(C, k_{V}\right)=C^{d} \bmod N$.
Browser receives: [C, y]
Checks $E\left(y, K_{V}\right)=C$?
$E\left(S_{v}(C), K_{V}\right)$

Signatures using RSA.

Verisign: k_{v}, K_{v}

$\left[C, S_{v}(C)\right]$

$$
C=E\left(S_{V}(C), k_{V}\right) ?
$$

$\left[C, S_{v}(C)\right]$

Amazon

Browser. K_{v}

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign's key: $K_{V}=(N, e)$ and $k_{V}=d(N=p q$.)
Browser "knows" Verisign's public key: K_{V}.
Amazon Certificate: $C=$ "I am Amazon. My public Key is K_{A}."
Versign signature of $C: S_{v}(C): D\left(C, k_{V}\right)=C^{d} \bmod N$.
Browser receives: [C, y]
Checks $E\left(y, K_{V}\right)=C$?
$E\left(S_{v}(C), K_{V}\right)=\left(S_{v}(C)\right)^{e}$

Signatures using RSA.

Verisign: k_{v}, K_{v}

$\left[C, S_{v}(C)\right]$

$$
C=E\left(S_{V}(C), k_{V}\right) ?
$$

[$C, S_{v}(C)$]

Amazon

Browser. K_{v}

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign's key: $K_{V}=(N, e)$ and $k_{V}=d(N=p q$.)
Browser "knows" Verisign's public key: K_{V}.
Amazon Certificate: $C=$ "I am Amazon. My public Key is K_{A}."
Versign signature of $C: S_{v}(C): D\left(C, k_{V}\right)=C^{d} \bmod N$.
Browser receives: [C, y]
Checks $E\left(y, K_{V}\right)=C$?
$E\left(S_{v}(C), K_{V}\right)=\left(S_{v}(C)\right)^{e}=\left(C^{d}\right)^{e}$

Signatures using RSA.

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign's key: $K_{V}=(N, e)$ and $k_{V}=d(N=p q$.)
Browser "knows" Verisign's public key: K_{V}.
Amazon Certificate: $C=$ "I am Amazon. My public Key is K_{A}."
Versign signature of $C: S_{v}(C): D\left(C, k_{V}\right)=C^{d} \bmod N$.
Browser receives: [C, y]
Checks $E\left(y, K_{V}\right)=C$?
$E\left(S_{V}(C), K_{V}\right)=\left(S_{V}(C)\right)^{e}=\left(C^{d}\right)^{e}=C^{d e}$

Signatures using RSA.

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign's key: $K_{V}=(N, e)$ and $k_{V}=d(N=p q$.)
Browser "knows" Verisign's public key: K_{V}.
Amazon Certificate: $C=$ "I am Amazon. My public Key is K_{A}."
Versign signature of $C: S_{v}(C): D\left(C, k_{V}\right)=C^{d} \bmod N$.
Browser receives: [C, y]
Checks $E\left(y, K_{V}\right)=C$?
$E\left(S_{v}(C), K_{V}\right)=\left(S_{v}(C)\right)^{e}=\left(C^{d}\right)^{e}=C^{d e}=C(\bmod N)$

Signatures using RSA.

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign's key: $K_{V}=(N, e)$ and $k_{V}=d(N=p q$.)
Browser "knows" Verisign's public key: K_{V}.
Amazon Certificate: $C=$ "I am Amazon. My public Key is K_{A}."
Versign signature of $C: S_{v}(C): D\left(C, k_{V}\right)=C^{d} \bmod N$.
Browser receives: [C, y]
Checks $E\left(y, K_{V}\right)=C$?
$E\left(S_{v}(C), K_{V}\right)=\left(S_{v}(C)\right)^{e}=\left(C^{d}\right)^{e}=C^{d e}=C(\bmod N)$
Valid signature of Amazon certificate C !

Signatures using RSA.

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign's key: $K_{V}=(N, e)$ and $k_{V}=d(N=p q$.)
Browser "knows" Verisign's public key: K_{V}.
Amazon Certificate: $C=$ "I am Amazon. My public Key is K_{A}."
Versign signature of $C: S_{v}(C): D\left(C, k_{V}\right)=C^{d} \bmod N$.
Browser receives: [C, y]
Checks $E\left(y, K_{V}\right)=C$?
$E\left(S_{v}(C), K_{V}\right)=\left(S_{v}(C)\right)^{e}=\left(C^{d}\right)^{e}=C^{d e}=C(\bmod N)$
Valid signature of Amazon certificate C !
Security: Eve can't forge unless she "breaks" RSA scheme.

RSA

RSA

Public Key Cryptography:

RSA

Public Key Cryptography:
$D(E(m, K), k)=\left(m^{e}\right)^{d} \bmod N=m$.

RSA

Public Key Cryptography:
$D(E(m, K), k)=\left(m^{e}\right)^{d} \bmod N=m$.
Signature scheme:

RSA

Public Key Cryptography:
$D(E(m, K), k)=\left(m^{e}\right)^{d} \bmod N=m$.
Signature scheme:
$E(D(C, k), K)=\left(C^{d}\right)^{e} \bmod N=C$

Poll

Signature authority has public key (N, e).

Poll

Signature authority has public key (\mathbf{N}, e).
(A) Given message/signature (x, y) : check $y^{d}=x(\bmod N)$
(B) Given message/signature (x, y) : check $y^{e}=x(\bmod N)$
(C) Signature of message x is $x^{e}(\bmod N)$
(D) Signature of message x is $x^{d}(\bmod N)$

Poll

Signature authority has public key (\mathbf{N}, e).
(A) Given message/signature (x, y) : check $y^{d}=x(\bmod N)$
(B) Given message/signature (x, y) : check $y^{e}=x(\bmod N)$
(C) Signature of message x is $x^{e}(\bmod N)$
(D) Signature of message x is $x^{d}(\bmod N)$

Other Eve.

Other Eve.

Get CA to certify fake certificates: Microsoft Corporation.

Other Eve.

Get CA to certify fake certificates: Microsoft Corporation. 2001..Doh.

Other Eve.

Get CA to certify fake certificates: Microsoft Corporation. 2001..Doh.
... and August 28, 2011 announcement.

Other Eve.

Get CA to certify fake certificates: Microsoft Corporation.
2001..Doh.
... and August 28, 2011 announcement.
DigiNotar Certificate issued for Microsoft!!!

Other Eve.

Get CA to certify fake certificates: Microsoft Corporation.
2001..Doh.
... and August 28, 2011 announcement.
DigiNotar Certificate issued for Microsoft!!!
How does Microsoft get a CA to issue certificate to them ...

Other Eve.

Get CA to certify fake certificates: Microsoft Corporation.
2001..Doh.
... and August 28, 2011 announcement.
DigiNotar Certificate issued for Microsoft!!!
How does Microsoft get a CA to issue certificate to them ...
and only them?

Summary.

Public-Key Encryption.

Summary.

Public-Key Encryption.
RSA Scheme:

Summary.

Public-Key Encryption.
RSA Scheme:
$N=p q$ and $d=e^{-1}(\bmod (p-1)(q-1))$.
$E(x)=x^{e}(\bmod N)$.
$D(y)=y^{d}(\bmod N)$.

Summary.

Public-Key Encryption.

RSA Scheme:
$N=p q$ and $d=e^{-1}(\bmod (p-1)(q-1))$.
$E(x)=x^{e}(\bmod N)$.
$D(y)=y^{d}(\bmod N)$.
Repeated Squaring \Longrightarrow efficiency.

Summary.

Public-Key Encryption.
RSA Scheme:
$N=p q$ and $d=e^{-1}(\bmod (p-1)(q-1))$.
$E(x)=x^{e}(\bmod N)$.
$D(y)=y^{d}(\bmod N)$.
Repeated Squaring \Longrightarrow efficiency.
Fermat's Theorem \Longrightarrow correctness.

Summary.

Public-Key Encryption.
RSA Scheme:
$N=p q$ and $d=e^{-1}(\bmod (p-1)(q-1))$.
$E(x)=x^{e}(\bmod N)$.
$D(y)=y^{d}(\bmod N)$.
Repeated Squaring \Longrightarrow efficiency.
Fermat's Theorem \Longrightarrow correctness.
Good for Encryption

Summary.

Public-Key Encryption.
RSA Scheme:
$N=p q$ and $d=e^{-1}(\bmod (p-1)(q-1))$.
$E(x)=x^{e}(\bmod N)$.
$D(y)=y^{d}(\bmod N)$.
Repeated Squaring \Longrightarrow efficiency.
Fermat's Theorem \Longrightarrow correctness.
Good for Encryption and Signature Schemes.

Today.

Today.

Polynomials.

Today.

Polynomials.
Secret Sharing.

Today.

Polynomials.
Secret Sharing.
Correcting for loss or even corruption.

Secret Sharing.

Secret Sharing.

Share secret among n people.

Secret Sharing.

Share secret among n people.
Secrecy: Any $k-1$ knows nothing.

Secret Sharing.

Share secret among n people.
Secrecy: Any $k-1$ knows nothing. Roubustness: Any k knows secret.

Secret Sharing.

Share secret among n people.
Secrecy: Any $k-1$ knows nothing. Roubustness: Any k knows secret. Efficient: minimize storage.

Secret Sharing.

Share secret among n people.
Secrecy: Any $k-1$ knows nothing. Roubustness: Any k knows secret. Efficient: minimize storage.

Secret Sharing.

Share secret among n people.
Secrecy: Any $k-1$ knows nothing. Roubustness: Any k knows secret. Efficient: minimize storage.
The idea of the day.

Secret Sharing.

Share secret among n people.
Secrecy: Any $k-1$ knows nothing. Roubustness: Any k knows secret. Efficient: minimize storage.
The idea of the day.

Secret Sharing.

Share secret among n people.

Secrecy: Any $k-1$ knows nothing. Roubustness: Any k knows secret. Efficient: minimize storage.

The idea of the day.
Two points make a line.

Secret Sharing.

Share secret among n people.

Secrecy: Any $k-1$ knows nothing. Roubustness: Any k knows secret. Efficient: minimize storage.
The idea of the day.
Two points make a line.
Lots of lines go through one point.

Polynomials

A polynomial

$$
P(x)=a_{d} x^{d}+a_{d-1} x^{d-1} \cdots+a_{0}
$$

is specified by coefficients $a_{d}, \ldots a_{0}$.
${ }^{2} \mathrm{~A}$ field is a set of elements with addition and multiplication operations, with inverses. $G F(p)=(\{0, \ldots, p-1\},+(\bmod p), *(\bmod p))$.

Polynomials

A polynomial

$$
P(x)=a_{d} x^{d}+a_{d-1} x^{d-1} \cdots+a_{0} .
$$

is specified by coefficients $a_{d}, \ldots a_{0}$.
$P(x)$ contains point (a, b) if $b=P(a)$.
${ }^{2} \mathrm{~A}$ field is a set of elements with addition and multiplication operations, with inverses. $G F(p)=(\{0, \ldots, p-1\},+(\bmod p), *(\bmod p))$.

Polynomials

A polynomial

$$
P(x)=a_{d} x^{d}+a_{d-1} x^{d-1} \cdots+a_{0} .
$$

is specified by coefficients $a_{d}, \ldots a_{0}$.
$P(x)$ contains point (a, b) if $b=P(a)$.
Polynomials over reals: $a_{1}, \ldots, a_{d} \in \mathfrak{R}$, use $x \in \mathfrak{R}$.
${ }^{2} \mathrm{~A}$ field is a set of elements with addition and multiplication operations, with inverses. $G F(p)=(\{0, \ldots, p-1\},+(\bmod p), *(\bmod p))$.

Polynomials

A polynomial

$$
P(x)=a_{d} x^{d}+a_{d-1} x^{d-1} \cdots+a_{0}
$$

is specified by coefficients $a_{d}, \ldots a_{0}$.
$P(x)$ contains point (a, b) if $b=P(a)$.
Polynomials over reals: $a_{1}, \ldots, a_{d} \in \Re$, use $x \in \Re$.
Polynomials $P(x)$ with arithmetic modulo $p:{ }^{2} a_{i} \in\{0, \ldots, p-1\}$ and

$$
P(x)=a_{d} x^{d}+a_{d-1} x^{d-1} \cdots+a_{0} \quad(\bmod p)
$$

for $x \in\{0, \ldots, p-1\}$.
${ }^{2} \mathrm{~A}$ field is a set of elements with addition and multiplication operations, with inverses. $G F(p)=(\{0, \ldots, p-1\},+(\bmod p), *(\bmod p))$.

Polynomial: $P(x)=a_{d} x^{4}+\cdots+a_{0}$

Line: $P(x)=a_{1} x+a_{0}$

Polynomial: $P(x)=a_{d} x^{4}+\cdots+a_{0}$

Line: $P(x)=a_{1} x+a_{0}=m x+b$

Polynomial: $P(x)=a_{d} x^{4}+\cdots+a_{0}$

Line: $P(x)=a_{1} x+a_{0}=m x+b$
$P(x)$

Polynomial: $P(x)=a_{d} x^{4}+\cdots+a_{0}$

Line: $P(x)=a_{1} x+a_{0}=m x+b$

Polynomial: $P(x)=a_{d} x^{4}+\cdots+a_{0}$

Line: $P(x)=a_{1} x+a_{0}=m x+b$

Polynomial: $P(x)=a_{d} x^{4}+\cdots+a_{0}$

Line: $P(x)=a_{1} x+a_{0}=m x+b$

Parabola: $P(x)=a_{2} x^{2}+a_{1} x+a_{0}$

Polynomial: $P(x)=a_{d} x^{4}+\cdots+a_{0}$

Line: $P(x)=a_{1} x+a_{0}=m x+b$

Parabola: $P(x)=a_{2} x^{2}+a_{1} x+a_{0}=a x^{2}+b x+c$

Polynomial: $P(x)=a_{d} x^{4}+\cdots+a_{0}$

Line: $P(x)=a_{1} x+a_{0}=m x+b$

Parabola: $P(x)=a_{2} x^{2}+a_{1} x+a_{0}=a x^{2}+b x+c$

Polynomial: $P(x)=a_{d} x^{4}+\cdots+a_{0}$

Line: $P(x)=a_{1} x+a_{0}=m x+b$

Parabola: $P(x)=a_{2} x^{2}+a_{1} x+a_{0}=a x^{2}+b x+c$

Polynomial: $P(x)=a_{d} x^{4}+\cdots+a_{0}(\bmod p)$

Polynomial: $P(x)=a_{d} x^{4}+\cdots+a_{0}(\bmod p)$

Polynomial: $P(x)=a_{d} x^{4}+\cdots+a_{0}(\bmod p)$

Finding an intersection.
$x+2 \equiv 3 x+1(\bmod 5)$
$\Longrightarrow 2 x \equiv 1(\bmod 5)$

Polynomial: $P(x)=a_{d} x^{4}+\cdots+a_{0}(\bmod p)$

Finding an intersection.
$x+2 \equiv 3 x+1(\bmod 5)$
$\Longrightarrow 2 x \equiv 1(\bmod 5) \Longrightarrow x \equiv 3(\bmod 5)$
3 is multiplicative inverse of 2 modulo 5 .

Polynomial: $P(x)=a_{d} x^{4}+\cdots+a_{0}(\bmod p)$

Finding an intersection.
$x+2 \equiv 3 x+1(\bmod 5)$
$\Longrightarrow 2 x \equiv 1(\bmod 5) \Longrightarrow x \equiv 3(\bmod 5)$
3 is multiplicative inverse of 2 modulo 5 .
Good when modulus is prime!!

Two points make a line.

Fact: Exactly 1 degree $\leq d$ polynomial contains $d+1$ points. ${ }^{3}$

[^5]
Two points make a line.

Fact: Exactly 1 degree $\leq d$ polynomial contains $d+1$ points. ${ }^{3}$
Two points specify a line.

[^6]
Two points make a line.

Fact: Exactly 1 degree $\leq d$ polynomial contains $d+1$ points. ${ }^{3}$
Two points specify a line. Three points specify a parabola.

[^7]
Two points make a line.

Fact: Exactly 1 degree $\leq d$ polynomial contains $d+1$ points. ${ }^{3}$
Two points specify a line. Three points specify a parabola.
Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d+1$ pts.

[^8]
Poll.

Two points determine a line.
What facts below tell you this?
Say points are $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$.

Poll.

Two points determine a line.
What facts below tell you this?
Say points are $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$.
(A) Line is $y=m x+b$.
(B) Plug in a point gives an equation: $y_{1}=m x_{1}+b$
(C) The unknowns are m and b.
(D) If equations have unique solution, done.

Poll.

Two points determine a line.
What facts below tell you this?
Say points are $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$.
(A) Line is $y=m x+b$.
(B) Plug in a point gives an equation: $y_{1}=m x_{1}+b$
(C) The unknowns are m and b.
(D) If equations have unique solution, done.

All true.

In the Flow (Steph Curry) Poll.

Why solution? Why unique?

In the Flow (Steph Curry) Poll.

Why solution? Why unique?

(A) Solution cuz: $m=\left(y_{2}-y_{1}\right) /\left(x_{2}-x_{1}\right), b=y_{1}-m\left(x_{1}\right)$
(B) Unique cuz, only one line goes through two points.
(C) Try: $\left(m^{\prime} x+b^{\prime}\right)-(m x+b)=\left(m^{\prime}-m\right) x+\left(b-b^{\prime}\right)=a x+c \neq 0$.
(D) Either $a x_{1}+c \neq 0$ or $a x_{2}+c \neq 0$.
(E) Contradiction.

In the Flow (Steph Curry) Poll.

Why solution? Why unique?

(A) Solution cuz: $m=\left(y_{2}-y_{1}\right) /\left(x_{2}-x_{1}\right), b=y_{1}-m\left(x_{1}\right)$
(B) Unique cuz, only one line goes through two points.
(C) Try: $\left(m^{\prime} x+b^{\prime}\right)-(m x+b)=\left(m^{\prime}-m\right) x+\left(b-b^{\prime}\right)=a x+c \neq 0$.
(D) Either $a x_{1}+c \neq 0$ or $a x_{2}+c \neq 0$.
(E) Contradiction.

Flow poll. (All true. (B) is not a proof, it is restatement.)

Notation: two points on a line.

Polynomial: $a_{n} x^{n}+\cdots+a_{0}$.

Notation: two points on a line.

Polynomial: $a_{n} x^{n}+\cdots+a_{0}$.
Consider line: $m x+b$

Notation: two points on a line.

Polynomial: $a_{n} x^{n}+\cdots+a_{0}$.
Consider line: $m x+b$
(A) $a_{1}=m$
(B) $a_{1}=b$
(C) $a_{0}=m$
(D) $a_{0}=b$.

Notation: two points on a line.

Polynomial: $a_{n} x^{n}+\cdots+a_{0}$.
Consider line: $m x+b$
(A) $a_{1}=m$
(B) $a_{1}=b$
(C) $a_{0}=m$
(D) $a_{0}=b$.
(A) and (D)

3 points determine a parabola.

Fact: Exactly 1 degree $\leq d$ polynomial contains $d+1$ points. ${ }^{4}$

3 points determine a parabola.

Fact: Exactly 1 degree $\leq d$ polynomial contains $d+1$ points. ${ }^{4}$

3 points determine a parabola.

Fact: Exactly 1 degree $\leq d$ polynomial contains $d+1$ points. ${ }^{4}$

3 points determine a parabola.

Fact: Exactly 1 degree $\leq d$ polynomial contains $d+1$ points. ${ }^{4}$

3 points determine a parabola.

Fact: Exactly 1 degree $\leq d$ polynomial contains $d+1$ points. ${ }^{4}$

3 points determine a parabola.

Fact: Exactly 1 degree $\leq d$ polynomial contains $d+1$ points. ${ }^{4}$

3 points determine a parabola.

Fact: Exactly 1 degree $\leq d$ polynomial contains $d+1$ points. ${ }^{4}$

3 points determine a parabola.

Fact: Exactly 1 degree $\leq d$ polynomial contains $d+1$ points. ${ }^{4}$

3 points determine a parabola.

Fact: Exactly 1 degree $\leq d$ polynomial contains $d+1$ points. ${ }^{4}$

[^9]
2 points not enough.

There is $P(x)$ contains blue points and any $(0, y)$!

2 points not enough.

There is $P(x)$ contains blue points and any $(0, y)$!

2 points not enough.

There is $P(x)$ contains blue points and any $(0, y)$!

2 points not enough.

There is $P(x)$ contains blue points and any $(0, y)$!

2 points not enough.

There is $P(x)$ contains blue points and any $(0, y)$!

2 points not enough.

There is $P(x)$ contains blue points and any $(0, y)$!

2 points not enough.

There is $P(x)$ contains blue points and any $(0, y)$!

2 points not enough.

There is $P(x)$ contains blue points and any $(0, y)$!

2 points not enough.

2 points not enough.

There is $P(x)$ contains blue points and any $(0, y)$!

Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d+1$ pts.

Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d+1$ pts.
Shamir's k out of n Scheme:

Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d+1$ pts.
Shamir's k out of n Scheme:
Secret $s \in\{0, \ldots, p-1\}$

Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d+1$ pts.
Shamir's k out of n Scheme:
Secret $s \in\{0, \ldots, p-1\}$

1. Choose $a_{0}=s$, and random a_{1}, \ldots, a_{k-1}.

Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d+1$ pts.
Shamir's k out of n Scheme:
Secret $s \in\{0, \ldots, p-1\}$

1. Choose $a_{0}=s$, and random a_{1}, \ldots, a_{k-1}.
2. Let $P(x)=a_{k-1} x^{k-1}+a_{k-2} x^{k-2}+\cdots a_{0}$ with $a_{0}=s$.

Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d+1$ pts.
Shamir's k out of n Scheme:
Secret $s \in\{0, \ldots, p-1\}$

1. Choose $a_{0}=s$, and random a_{1}, \ldots, a_{k-1}.
2. Let $P(x)=a_{k-1} x^{k-1}+a_{k-2} x^{k-2}+\cdots a_{0}$ with $a_{0}=s$.
3. Share i is point $(i, P(i) \bmod p)$.

Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d+1$ pts.
Shamir's k out of n Scheme:
Secret $s \in\{0, \ldots, p-1\}$

1. Choose $a_{0}=s$, and random a_{1}, \ldots, a_{k-1}.
2. Let $P(x)=a_{k-1} x^{k-1}+a_{k-2} x^{k-2}+\cdots a_{0}$ with $a_{0}=s$.
3. Share i is point $(i, P(i) \bmod p)$.

Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d+1$ pts.
Shamir's k out of n Scheme:
Secret $s \in\{0, \ldots, p-1\}$

1. Choose $a_{0}=s$, and random a_{1}, \ldots, a_{k-1}.
2. Let $P(x)=a_{k-1} x^{k-1}+a_{k-2} x^{k-2}+\cdots a_{0}$ with $a_{0}=s$.
3. Share i is point $(i, P(i) \bmod p)$.

Roubustness: Any k shares gives secret.

Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d+1$ pts.
Shamir's k out of n Scheme:
Secret $s \in\{0, \ldots, p-1\}$

1. Choose $a_{0}=s$, and random a_{1}, \ldots, a_{k-1}.
2. Let $P(x)=a_{k-1} x^{k-1}+a_{k-2} x^{k-2}+\cdots a_{0}$ with $a_{0}=s$.
3. Share i is point $(i, P(i) \bmod p)$.

Roubustness: Any k shares gives secret.
Knowing k pts

Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d+1$ pts.
Shamir's k out of n Scheme:
Secret $s \in\{0, \ldots, p-1\}$

1. Choose $a_{0}=s$, and random a_{1}, \ldots, a_{k-1}.
2. Let $P(x)=a_{k-1} x^{k-1}+a_{k-2} x^{k-2}+\cdots a_{0}$ with $a_{0}=s$.
3. Share i is point $(i, P(i) \bmod p)$.

Roubustness: Any k shares gives secret.
Knowing k pts \Longrightarrow only one $P(x)$

Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d+1$ pts.
Shamir's k out of n Scheme:
Secret $s \in\{0, \ldots, p-1\}$

1. Choose $a_{0}=s$, and random a_{1}, \ldots, a_{k-1}.
2. Let $P(x)=a_{k-1} x^{k-1}+a_{k-2} x^{k-2}+\cdots a_{0}$ with $a_{0}=s$.
3. Share i is point $(i, P(i) \bmod p)$.

Roubustness: Any k shares gives secret.
Knowing k pts \Longrightarrow only one $P(x) \Longrightarrow$ evaluate $P(0)$.

Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d+1$ pts.
Shamir's k out of n Scheme:
Secret $s \in\{0, \ldots, p-1\}$

1. Choose $a_{0}=s$, and random a_{1}, \ldots, a_{k-1}.
2. Let $P(x)=a_{k-1} x^{k-1}+a_{k-2} x^{k-2}+\cdots a_{0}$ with $a_{0}=s$.
3. Share i is point $(i, P(i) \bmod p)$.

Roubustness: Any k shares gives secret.
Knowing k pts \Longrightarrow only one $P(x) \Longrightarrow$ evaluate $P(0)$.
Secrecy: Any $k-1$ shares give nothing.

Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d+1$ pts.
Shamir's k out of n Scheme:
Secret $s \in\{0, \ldots, p-1\}$

1. Choose $a_{0}=s$, and random a_{1}, \ldots, a_{k-1}.
2. Let $P(x)=a_{k-1} x^{k-1}+a_{k-2} x^{k-2}+\cdots a_{0}$ with $a_{0}=s$.
3. Share i is point $(i, P(i) \bmod p)$.

Roubustness: Any k shares gives secret.
Knowing k pts \Longrightarrow only one $P(x) \Longrightarrow$ evaluate $P(0)$.
Secrecy: Any $k-1$ shares give nothing.
Knowing $\leq k-1$ pts

Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d+1$ pts.
Shamir's k out of n Scheme:
Secret $s \in\{0, \ldots, p-1\}$

1. Choose $a_{0}=s$, and random a_{1}, \ldots, a_{k-1}.
2. Let $P(x)=a_{k-1} x^{k-1}+a_{k-2} x^{k-2}+\cdots a_{0}$ with $a_{0}=s$.
3. Share i is point $(i, P(i) \bmod p)$.

Roubustness: Any k shares gives secret.
Knowing k pts \Longrightarrow only one $P(x) \Longrightarrow$ evaluate $P(0)$.
Secrecy: Any $k-1$ shares give nothing.
Knowing $\leq k-1$ pts \Longrightarrow any $P(0)$ is possible.

Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d+1$ pts.
Shamir's k out of n Scheme:
Secret $s \in\{0, \ldots, p-1\}$

1. Choose $a_{0}=s$, and random a_{1}, \ldots, a_{k-1}.
2. Let $P(x)=a_{k-1} x^{k-1}+a_{k-2} x^{k-2}+\cdots a_{0}$ with $a_{0}=s$.
3. Share i is point $(i, P(i) \bmod p)$.

Roubustness: Any k shares gives secret.
Knowing k pts \Longrightarrow only one $P(x) \Longrightarrow$ evaluate $P(0)$.
Secrecy: Any $k-1$ shares give nothing.
Knowing $\leq k-1$ pts \Longrightarrow any $P(0)$ is possible.

Poll:example.

The polynomial from the scheme: $P(x)=2 x^{2}+1 x+3(\bmod 5)$. What is true for the secret sharing scheme using $P(x)$?

Poll:example.

The polynomial from the scheme: $P(x)=2 x^{2}+1 x+3(\bmod 5)$. What is true for the secret sharing scheme using $P(x)$?
(A) The secret is " 2 ".
(B) The secret is " 3 ".
(C) A share could be $(1,5)$ cuz $P(1)=5$
(D) A share could be $(2,4)$
(E) A share could be $(0,3)$

Poll:example.

The polynomial from the scheme: $P(x)=2 x^{2}+1 x+3(\bmod 5)$. What is true for the secret sharing scheme using $P(x)$?
(A) The secret is " 2 ".
(B) The secret is " 3 ".
(C) A share could be $(1,5)$ cuz $P(1)=5$
(D) A share could be $(2,4)$
(E) A share could be $(0,3)$
(B)(C),(D)

From $d+1$ points to degree d polynomial?

For a line, $a_{1} x+a_{0}=m x+b$ contains points $(1,3)$ and $(2,4)$.

From $d+1$ points to degree d polynomial?

For a line, $a_{1} x+a_{0}=m x+b$ contains points $(1,3)$ and $(2,4)$.

$$
P(1)=
$$

From $d+1$ points to degree d polynomial?

For a line, $a_{1} x+a_{0}=m x+b$ contains points $(1,3)$ and $(2,4)$.

$$
P(1)=m(1)+b \equiv m+b
$$

From $d+1$ points to degree d polynomial?

For a line, $a_{1} x+a_{0}=m x+b$ contains points $(1,3)$ and $(2,4)$.

$$
P(1)=m(1)+b \equiv m+b \equiv 3 \quad(\bmod 5)
$$

From $d+1$ points to degree d polynomial?

For a line, $a_{1} x+a_{0}=m x+b$ contains points $(1,3)$ and $(2,4)$.

$$
\begin{aligned}
P(1)=m(1)+b & \equiv m+b \equiv 3 \quad(\bmod 5) \\
P(2)=m(2)+b & \equiv 2 m+b \equiv 4 \quad(\bmod 5)
\end{aligned}
$$

From $d+1$ points to degree d polynomial?

For a line, $a_{1} x+a_{0}=m x+b$ contains points $(1,3)$ and $(2,4)$.

$$
\begin{aligned}
P(1)=m(1)+b & \equiv m+b \equiv 3 \quad(\bmod 5) \\
P(2)=m(2)+b & \equiv 2 m+b \equiv 4 \quad(\bmod 5)
\end{aligned}
$$

From $d+1$ points to degree d polynomial?

For a line, $a_{1} x+a_{0}=m x+b$ contains points $(1,3)$ and $(2,4)$.

$$
\begin{aligned}
P(1)=m(1)+b & \equiv m+b \equiv 3 \quad(\bmod 5) \\
P(2)=m(2)+b & \equiv 2 m+b \equiv 4 \quad(\bmod 5)
\end{aligned}
$$

Subtract first from second..

From $d+1$ points to degree d polynomial?

For a line, $a_{1} x+a_{0}=m x+b$ contains points $(1,3)$ and $(2,4)$.

$$
\begin{aligned}
P(1)=m(1)+b & \equiv m+b \equiv 3 \quad(\bmod 5) \\
P(2)=m(2)+b & \equiv 2 m+b \equiv 4 \quad(\bmod 5)
\end{aligned}
$$

Subtract first from second..

$$
\begin{aligned}
m+b & \equiv 3(\bmod 5) \\
m & \equiv 1 \quad(\bmod 5)
\end{aligned}
$$

From $d+1$ points to degree d polynomial?

For a line, $a_{1} x+a_{0}=m x+b$ contains points $(1,3)$ and $(2,4)$.

$$
\begin{aligned}
P(1)=m(1)+b & \equiv m+b \equiv 3 \quad(\bmod 5) \\
P(2)=m(2)+b & \equiv 2 m+b \equiv 4 \quad(\bmod 5)
\end{aligned}
$$

Subtract first from second..

$$
\begin{aligned}
m+b & \equiv 3 \quad(\bmod 5) \\
m & \equiv 1 \quad(\bmod 5)
\end{aligned}
$$

Backsolve: $b \equiv 2(\bmod 5)$.

From $d+1$ points to degree d polynomial?

For a line, $a_{1} x+a_{0}=m x+b$ contains points $(1,3)$ and $(2,4)$.

$$
\begin{aligned}
P(1)=m(1)+b & \equiv m+b \equiv 3 \quad(\bmod 5) \\
P(2)=m(2)+b & \equiv 2 m+b \equiv 4 \quad(\bmod 5)
\end{aligned}
$$

Subtract first from second..

$$
\begin{aligned}
m+b & \equiv 3 \quad(\bmod 5) \\
m & \equiv 1 \quad(\bmod 5)
\end{aligned}
$$

Backsolve: $b \equiv 2(\bmod 5)$. Secret is 2 .

From $d+1$ points to degree d polynomial?

For a line, $a_{1} x+a_{0}=m x+b$ contains points $(1,3)$ and $(2,4)$.

$$
\begin{aligned}
P(1)=m(1)+b & \equiv m+b \equiv 3 \quad(\bmod 5) \\
P(2)=m(2)+b & \equiv 2 m+b \equiv 4 \quad(\bmod 5)
\end{aligned}
$$

Subtract first from second..

$$
\begin{aligned}
m+b & \equiv 3 \quad(\bmod 5) \\
m & \equiv 1 \quad(\bmod 5)
\end{aligned}
$$

Backsolve: $b \equiv 2(\bmod 5)$. Secret is 2 .
And the line is...

$$
x+2 \bmod 5
$$

Quadratic

For a quadratic polynomial, $a_{2} x^{2}+a_{1} x+a_{0}$ hits (1,2); (2,4); (3,0).

Quadratic

For a quadratic polynomial, $a_{2} x^{2}+a_{1} x+a_{0}$ hits (1,2); (2,4); (3,0). Plug in points to find equations.

Quadratic

For a quadratic polynomial, $a_{2} x^{2}+a_{1} x+a_{0}$ hits (1,2); (2,4); (3,0). Plug in points to find equations.

$$
P(1)=a_{2}+a_{1}+a_{0} \equiv 2(\bmod 5)
$$

Quadratic

For a quadratic polynomial, $a_{2} x^{2}+a_{1} x+a_{0}$ hits (1,2); (2,4); (3,0). Plug in points to find equations.

$$
\begin{aligned}
P(1)=a_{2}+a_{1}+a_{0} & \equiv 2(\bmod 5) \\
P(2)=4 a_{2}+2 a_{1}+a_{0} & \equiv 4(\bmod 5)
\end{aligned}
$$

Quadratic

For a quadratic polynomial, $a_{2} x^{2}+a_{1} x+a_{0}$ hits (1,2); $(2,4) ;(3,0)$. Plug in points to find equations.

$$
\begin{aligned}
P(1)=a_{2}+a_{1}+a_{0} & \equiv 2(\bmod 5) \\
P(2)=4 a_{2}+2 a_{1}+a_{0} & \equiv 4(\bmod 5) \\
P(3)=4 a_{2}+3 a_{1}+a_{0} & \equiv 0 \quad(\bmod 5)
\end{aligned}
$$

Quadratic

For a quadratic polynomial, $a_{2} x^{2}+a_{1} x+a_{0}$ hits (1,2); $(2,4) ;(3,0)$. Plug in points to find equations.

$$
\begin{aligned}
P(1)=a_{2}+a_{1}+a_{0} & \equiv 2(\bmod 5) \\
P(2)=4 a_{2}+2 a_{1}+a_{0} & \equiv 4(\bmod 5) \\
P(3)=4 a_{2}+3 a_{1}+a_{0} & \equiv 0 \quad(\bmod 5)
\end{aligned}
$$

Quadratic

For a quadratic polynomial, $a_{2} x^{2}+a_{1} x+a_{0}$ hits (1,2); (2,4); (3,0). Plug in points to find equations.

$$
\begin{aligned}
P(1)=a_{2}+a_{1}+a_{0} & \equiv 2(\bmod 5) \\
P(2)=4 a_{2}+2 a_{1}+a_{0} & \equiv 4 \quad(\bmod 5) \\
P(3)=4 a_{2}+3 a_{1}+a_{0} & \equiv 0 \quad(\bmod 5) \\
a_{2}+a_{1}+a_{0} & \equiv 2(\bmod 5) \\
3 a_{1}+2 a_{0} & \equiv 1 \quad(\bmod 5) \\
4 a_{1}+2 a_{0} & \equiv 2(\bmod 5)
\end{aligned}
$$

Quadratic

For a quadratic polynomial, $a_{2} x^{2}+a_{1} x+a_{0}$ hits (1,2); (2,4); (3,0). Plug in points to find equations.

$$
\begin{aligned}
P(1)=a_{2}+a_{1}+a_{0} & \equiv 2(\bmod 5) \\
P(2)=4 a_{2}+2 a_{1}+a_{0} & \equiv 4 \quad(\bmod 5) \\
P(3)=4 a_{2}+3 a_{1}+a_{0} & \equiv 0 \quad(\bmod 5) \\
a_{2}+a_{1}+a_{0} & \equiv 2(\bmod 5) \\
3 a_{1}+2 a_{0} & \equiv 1 \quad(\bmod 5) \\
4 a_{1}+2 a_{0} & \equiv 2(\bmod 5)
\end{aligned}
$$

Subtracting 2nd from 3rd yields: $a_{1}=1$.

Quadratic

For a quadratic polynomial, $a_{2} x^{2}+a_{1} x+a_{0}$ hits (1,2); $(2,4) ;(3,0)$. Plug in points to find equations.

$$
\begin{aligned}
P(1)=a_{2}+a_{1}+a_{0} & \equiv 2(\bmod 5) \\
P(2)=4 a_{2}+2 a_{1}+a_{0} & \equiv 4 \quad(\bmod 5) \\
P(3)=4 a_{2}+3 a_{1}+a_{0} & \equiv 0 \quad(\bmod 5) \\
a_{2}+a_{1}+a_{0} & \equiv 2(\bmod 5) \\
3 a_{1}+2 a_{0} & \equiv 1 \quad(\bmod 5) \\
4 a_{1}+2 a_{0} & \equiv 2(\bmod 5)
\end{aligned}
$$

Subtracting 2nd from 3rd yields: $a_{1}=1$. $a_{0}=\left(2-4\left(a_{1}\right)\right) 2^{-1}$

Quadratic

For a quadratic polynomial, $a_{2} x^{2}+a_{1} x+a_{0}$ hits (1,2); $(2,4) ;(3,0)$. Plug in points to find equations.

$$
\begin{aligned}
P(1)=a_{2}+a_{1}+a_{0} & \equiv 2(\bmod 5) \\
P(2)=4 a_{2}+2 a_{1}+a_{0} & \equiv 4 \quad(\bmod 5) \\
P(3)=4 a_{2}+3 a_{1}+a_{0} & \equiv 0 \quad(\bmod 5) \\
a_{2}+a_{1}+a_{0} & \equiv 2(\bmod 5) \\
3 a_{1}+2 a_{0} & \equiv 1 \quad(\bmod 5) \\
4 a_{1}+2 a_{0} & \equiv 2(\bmod 5)
\end{aligned}
$$

Subtracting 2nd from 3rd yields: $a_{1}=1$. $a_{0}=\left(2-4\left(a_{1}\right)\right) 2^{-1}=(-2)\left(2^{-1}\right)$

Quadratic

For a quadratic polynomial, $a_{2} x^{2}+a_{1} x+a_{0}$ hits (1,2); $(2,4) ;(3,0)$. Plug in points to find equations.

$$
\begin{aligned}
P(1)=a_{2}+a_{1}+a_{0} & \equiv 2(\bmod 5) \\
P(2)=4 a_{2}+2 a_{1}+a_{0} & \equiv 4 \quad(\bmod 5) \\
P(3)=4 a_{2}+3 a_{1}+a_{0} & \equiv 0 \quad(\bmod 5) \\
a_{2}+a_{1}+a_{0} & \equiv 2(\bmod 5) \\
3 a_{1}+2 a_{0} & \equiv 1 \quad(\bmod 5) \\
4 a_{1}+2 a_{0} & \equiv 2(\bmod 5)
\end{aligned}
$$

Subtracting 2nd from 3rd yields: $a_{1}=1$.
$a_{0}=\left(2-4\left(a_{1}\right)\right) 2^{-1}=(-2)\left(2^{-1}\right)=(3)(3)$

Quadratic

For a quadratic polynomial, $a_{2} x^{2}+a_{1} x+a_{0}$ hits (1,2); $(2,4) ;(3,0)$. Plug in points to find equations.

$$
\begin{aligned}
P(1)=a_{2}+a_{1}+a_{0} & \equiv 2(\bmod 5) \\
P(2)=4 a_{2}+2 a_{1}+a_{0} & \equiv 4 \quad(\bmod 5) \\
P(3)=4 a_{2}+3 a_{1}+a_{0} & \equiv 0 \quad(\bmod 5) \\
a_{2}+a_{1}+a_{0} & \equiv 2(\bmod 5) \\
3 a_{1}+2 a_{0} & \equiv 1 \quad(\bmod 5) \\
4 a_{1}+2 a_{0} & \equiv 2(\bmod 5)
\end{aligned}
$$

Subtracting 2nd from 3rd yields: $a_{1}=1$.
$a_{0}=\left(2-4\left(a_{1}\right)\right) 2^{-1}=(-2)\left(2^{-1}\right)=(3)(3)=9 \equiv 4(\bmod 5)$

Quadratic

For a quadratic polynomial, $a_{2} x^{2}+a_{1} x+a_{0}$ hits (1,2); $(2,4) ;(3,0)$. Plug in points to find equations.

$$
\begin{aligned}
P(1)=a_{2}+a_{1}+a_{0} & \equiv 2(\bmod 5) \\
P(2)=4 a_{2}+2 a_{1}+a_{0} & \equiv 4 \quad(\bmod 5) \\
P(3)=4 a_{2}+3 a_{1}+a_{0} & \equiv 0 \quad(\bmod 5) \\
a_{2}+a_{1}+a_{0} & \equiv 2(\bmod 5) \\
3 a_{1}+2 a_{0} & \equiv 1 \quad(\bmod 5) \\
4 a_{1}+2 a_{0} & \equiv 2(\bmod 5)
\end{aligned}
$$

Subtracting 2nd from 3rd yields: $a_{1}=1$.

$$
\begin{aligned}
& a_{0}=\left(2-4\left(a_{1}\right)\right) 2^{-1}=(-2)\left(2^{-1}\right)=(3)(3)=9 \equiv 4(\bmod 5) \\
& a_{2}=2-1-4 \equiv 2(\bmod 5)
\end{aligned}
$$

Quadratic

For a quadratic polynomial, $a_{2} x^{2}+a_{1} x+a_{0}$ hits (1,2); $(2,4) ;(3,0)$. Plug in points to find equations.

$$
\begin{aligned}
& P(1)=a_{2}+a_{1}+a_{0} \equiv 2(\bmod 5) \\
& P(2)=4 a_{2}+2 a_{1}+a_{0} \equiv 4 \quad(\bmod 5) \\
& P(3)=4 a_{2}+3 a_{1}+a_{0} \equiv 0 \quad(\bmod 5) \\
& a_{2}+a_{1}+a_{0} \equiv 2(\bmod 5) \\
& 3 a_{1}+2 a_{0} \equiv 1 \\
& 4 a_{1}+2 a_{0} \equiv 2(\bmod 5) \\
&(\bmod 5)
\end{aligned}
$$

Subtracting 2nd from 3rd yields: $a_{1}=1$.

$$
\begin{aligned}
& a_{0}=\left(2-4\left(a_{1}\right)\right) 2^{-1}=(-2)\left(2^{-1}\right)=(3)(3)=9 \equiv 4(\bmod 5) \\
& a_{2}=2-1-4 \equiv 2(\bmod 5)
\end{aligned}
$$

Quadratic

For a quadratic polynomial, $a_{2} x^{2}+a_{1} x+a_{0}$ hits (1,2); $(2,4) ;(3,0)$. Plug in points to find equations.

$$
\begin{aligned}
& P(1)=a_{2}+a_{1}+a_{0} \equiv 2(\bmod 5) \\
& P(2)=4 a_{2}+2 a_{1}+a_{0} \equiv 4 \quad(\bmod 5) \\
& P(3)=4 a_{2}+3 a_{1}+a_{0} \equiv 0 \quad(\bmod 5) \\
& a_{2}+a_{1}+a_{0} \equiv 2(\bmod 5) \\
& 3 a_{1}+2 a_{0} \equiv 1 \\
& 4 a_{1}+2 a_{0} \equiv 2(\bmod 5) \\
&(\bmod 5)
\end{aligned}
$$

Subtracting 2nd from 3rd yields: $a_{1}=1$.

$$
\begin{aligned}
& a_{0}=\left(2-4\left(a_{1}\right)\right) 2^{-1}=(-2)\left(2^{-1}\right)=(3)(3)=9 \equiv 4(\bmod 5) \\
& a_{2}=2-1-4 \equiv 2(\bmod 5)
\end{aligned}
$$

So polynomial is $2 x^{2}+1 x+4(\bmod 5)$

In general..

Given points: $\left(x_{1}, y_{1}\right) ;\left(x_{2}, y_{2}\right) \cdots\left(x_{k}, y_{k}\right)$.

In general..

Given points: $\left(x_{1}, y_{1}\right) ;\left(x_{2}, y_{2}\right) \cdots\left(x_{k}, y_{k}\right)$.
Solve...

$$
\begin{aligned}
a_{k-1} x_{1}^{k-1}+\cdots+a_{0} & \equiv y_{1}(\bmod p) \\
a_{k-1} x_{2}^{k-1}+\cdots+a_{0} & \equiv y_{2}(\bmod p) \\
& \cdot \\
& \cdot \\
a_{k-1} x_{k}^{k-1}+\cdots+a_{0} & \equiv y_{k}(\bmod p)
\end{aligned}
$$

In general..

Given points: $\left(x_{1}, y_{1}\right) ;\left(x_{2}, y_{2}\right) \cdots\left(x_{k}, y_{k}\right)$.
Solve...

$$
\begin{aligned}
a_{k-1} x_{1}^{k-1}+\cdots+a_{0} & \equiv y_{1}(\bmod p) \\
a_{k-1} x_{2}^{k-1}+\cdots+a_{0} & \equiv y_{2}(\bmod p) \\
& \cdot \\
& \cdot \\
a_{k-1} x_{k}^{k-1}+\cdots+a_{0} & \equiv y_{k}(\bmod p)
\end{aligned}
$$

Will this always work?

In general..

Given points: $\left(x_{1}, y_{1}\right) ;\left(x_{2}, y_{2}\right) \cdots\left(x_{k}, y_{k}\right)$.
Solve...

$$
\begin{aligned}
a_{k-1} x_{1}^{k-1}+\cdots+a_{0} & \equiv y_{1}(\bmod p) \\
a_{k-1} x_{2}^{k-1}+\cdots+a_{0} & \equiv y_{2}(\bmod p) \\
& \cdot \\
& \cdot \\
a_{k-1} x_{k}^{k-1}+\cdots+a_{0} & \equiv y_{k}(\bmod p)
\end{aligned}
$$

Will this always work?
As long as solution exists and it is unique! And...

In general..

Given points: $\left(x_{1}, y_{1}\right) ;\left(x_{2}, y_{2}\right) \cdots\left(x_{k}, y_{k}\right)$.
Solve...

$$
\begin{aligned}
a_{k-1} x_{1}^{k-1}+\cdots+a_{0} & \equiv y_{1}(\bmod p) \\
a_{k-1} x_{2}^{k-1}+\cdots+a_{0} & \equiv y_{2}(\bmod p) \\
& \cdot \\
& \cdot \\
a_{k-1} x_{k}^{k-1}+\cdots+a_{0} & \equiv y_{k}(\bmod p)
\end{aligned}
$$

Will this always work?
As long as solution exists and it is unique! And...

In general..

Given points: $\left(x_{1}, y_{1}\right) ;\left(x_{2}, y_{2}\right) \cdots\left(x_{k}, y_{k}\right)$.
Solve...

$$
\begin{aligned}
a_{k-1} x_{1}^{k-1}+\cdots+a_{0} & \equiv y_{1}(\bmod p) \\
a_{k-1} x_{2}^{k-1}+\cdots+a_{0} & \equiv y_{2}(\bmod p) \\
& \cdot \\
& \cdot \\
a_{k-1} x_{k}^{k-1}+\cdots+a_{0} & \equiv y_{k}(\bmod p)
\end{aligned}
$$

Will this always work?
As long as solution exists and it is unique! And...
Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d+1$ pts.

Another Construction: Interpolation!

For a quadratic, $a_{2} x^{2}+a_{1} x+a_{0}$ hits $(1,2) ;(2,4) ;(3,0)$.

Another Construction: Interpolation!

For a quadratic, $a_{2} x^{2}+a_{1} x+a_{0}$ hits (1,2); (2,4); (3,0).
Find $\Delta_{1}(x)$ polynomial contains $(1,1) ;(2,0) ;(3,0)$.

Another Construction: Interpolation!

For a quadratic, $a_{2} x^{2}+a_{1} x+a_{0}$ hits (1,2); (2,4); (3,0).
Find $\Delta_{1}(x)$ polynomial contains $(1,1) ;(2,0) ;(3,0)$.
Try $(x-2)(x-3)(\bmod 5)$.

Another Construction: Interpolation!

For a quadratic, $a_{2} x^{2}+a_{1} x+a_{0}$ hits (1,2); (2,4); (3,0).
Find $\Delta_{1}(x)$ polynomial contains $(1,1) ;(2,0) ;(3,0)$.
Try $(x-2)(x-3)(\bmod 5)$.
Value is 0 at 2 and 3 .

Another Construction: Interpolation!

For a quadratic, $a_{2} x^{2}+a_{1} x+a_{0}$ hits (1,2); (2,4); (3,0).
Find $\Delta_{1}(x)$ polynomial contains $(1,1) ;(2,0) ;(3,0)$.
Try $(x-2)(x-3)(\bmod 5)$.
Value is 0 at 2 and 3 . Value is 2 at 1 .

Another Construction: Interpolation!

For a quadratic, $a_{2} x^{2}+a_{1} x+a_{0}$ hits (1,2); (2,4); (3,0).
Find $\Delta_{1}(x)$ polynomial contains $(1,1) ;(2,0) ;(3,0)$.
Try $(x-2)(x-3)(\bmod 5)$.
Value is 0 at 2 and 3 . Value is 2 at 1 . Not 1 ! Doh!!

Another Construction: Interpolation!

For a quadratic, $a_{2} x^{2}+a_{1} x+a_{0}$ hits (1,2); (2,4); (3,0).
Find $\Delta_{1}(x)$ polynomial contains $(1,1) ;(2,0) ;(3,0)$.
Try $(x-2)(x-3)(\bmod 5)$.
Value is 0 at 2 and 3 . Value is 2 at 1 . Not 1 ! Doh!! So "Divide by 2 " or multiply by 3.
$\Delta_{1}(x)=(x-2)(x-3)(3)(\bmod 5)$

Another Construction: Interpolation!

For a quadratic, $a_{2} x^{2}+a_{1} x+a_{0}$ hits (1,2); (2,4); (3,0).
Find $\Delta_{1}(x)$ polynomial contains $(1,1) ;(2,0) ;(3,0)$.
Try $(x-2)(x-3)(\bmod 5)$.
Value is 0 at 2 and 3 . Value is 2 at 1 . Not 1 ! Doh!! So "Divide by 2 " or multiply by 3.
$\Delta_{1}(x)=(x-2)(x-3)(3)(\bmod 5)$ contains $(1,1) ;(2,0) ;(3,0)$.

Another Construction: Interpolation!

For a quadratic, $a_{2} x^{2}+a_{1} x+a_{0}$ hits (1,2); (2,4); (3,0).
Find $\Delta_{1}(x)$ polynomial contains $(1,1) ;(2,0) ;(3,0)$.
Try $(x-2)(x-3)(\bmod 5)$.
Value is 0 at 2 and 3 . Value is 2 at 1 . Not 1 ! Doh!! So "Divide by 2 " or multiply by 3.
$\Delta_{1}(x)=(x-2)(x-3)(3)(\bmod 5)$ contains $(1,1) ;(2,0) ;(3,0)$.
$\Delta_{2}(x)=(x-1)(x-3)(4)(\bmod 5)$ contains $(1,0) ;(2,1) ;(3,0)$.

Another Construction: Interpolation!

For a quadratic, $a_{2} x^{2}+a_{1} x+a_{0}$ hits (1,2); (2,4); (3,0).
Find $\Delta_{1}(x)$ polynomial contains $(1,1) ;(2,0) ;(3,0)$.
Try $(x-2)(x-3)(\bmod 5)$.
Value is 0 at 2 and 3 . Value is 2 at 1 . Not 1 ! Doh!! So "Divide by 2 " or multiply by 3.
$\Delta_{1}(x)=(x-2)(x-3)(3)(\bmod 5)$ contains $(1,1) ;(2,0) ;(3,0)$.
$\Delta_{2}(x)=(x-1)(x-3)(4)(\bmod 5)$ contains $(1,0) ;(2,1) ;(3,0)$.
$\Delta_{3}(x)=(x-1)(x-2)(3)(\bmod 5)$ contains $(1,0) ;(2,0) ;(3,1)$.

Another Construction: Interpolation!

For a quadratic, $a_{2} x^{2}+a_{1} x+a_{0}$ hits (1,2); (2,4); (3,0).
Find $\Delta_{1}(x)$ polynomial contains $(1,1) ;(2,0) ;(3,0)$.
Try $(x-2)(x-3)(\bmod 5)$.
Value is 0 at 2 and 3 . Value is 2 at 1 . Not 1 ! Doh!!
So "Divide by 2 " or multiply by 3.
$\Delta_{1}(x)=(x-2)(x-3)(3)(\bmod 5)$ contains $(1,1) ;(2,0) ;(3,0)$.
$\Delta_{2}(x)=(x-1)(x-3)(4)(\bmod 5)$ contains $(1,0) ;(2,1) ;(3,0)$.
$\Delta_{3}(x)=(x-1)(x-2)(3)(\bmod 5)$ contains $(1,0) ;(2,0) ;(3,1)$.
But wanted to hit $(1,2) ;(2,4) ;(3,0)$!

Another Construction: Interpolation!

For a quadratic, $a_{2} x^{2}+a_{1} x+a_{0}$ hits (1,2); (2,4); (3,0).
Find $\Delta_{1}(x)$ polynomial contains $(1,1) ;(2,0) ;(3,0)$.
Try $(x-2)(x-3)(\bmod 5)$.
Value is 0 at 2 and 3 . Value is 2 at 1 . Not 1 ! Doh!!
So "Divide by 2 " or multiply by 3.
$\Delta_{1}(x)=(x-2)(x-3)(3)(\bmod 5)$ contains $(1,1) ;(2,0) ;(3,0)$.
$\Delta_{2}(x)=(x-1)(x-3)(4)(\bmod 5)$ contains $(1,0) ;(2,1) ;(3,0)$.
$\Delta_{3}(x)=(x-1)(x-2)(3)(\bmod 5)$ contains $(1,0) ;(2,0) ;(3,1)$.
But wanted to hit (1,2); (2,4); (3,0)!
$P(x)=2 \Delta_{1}(x)+4 \Delta_{2}(x)+0 \Delta_{3}(x)$ works.

Another Construction: Interpolation!

For a quadratic, $a_{2} x^{2}+a_{1} x+a_{0}$ hits (1,2); (2,4); (3,0).
Find $\Delta_{1}(x)$ polynomial contains $(1,1) ;(2,0) ;(3,0)$.
Try $(x-2)(x-3)(\bmod 5)$.
Value is 0 at 2 and 3 . Value is 2 at 1 . Not 1 ! Doh!!
So "Divide by 2 " or multiply by 3.
$\Delta_{1}(x)=(x-2)(x-3)(3)(\bmod 5)$ contains $(1,1) ;(2,0) ;(3,0)$.
$\Delta_{2}(x)=(x-1)(x-3)(4)(\bmod 5)$ contains $(1,0) ;(2,1) ;(3,0)$.
$\Delta_{3}(x)=(x-1)(x-2)(3)(\bmod 5)$ contains $(1,0) ;(2,0) ;(3,1)$.
But wanted to hit (1,2); $(2,4) ;(3,0)$!
$P(x)=2 \Delta_{1}(x)+4 \Delta_{2}(x)+0 \Delta_{3}(x)$ works.
Same as before?

Another Construction: Interpolation!

For a quadratic, $a_{2} x^{2}+a_{1} x+a_{0}$ hits (1,2); (2,4); (3,0).
Find $\Delta_{1}(x)$ polynomial contains $(1,1) ;(2,0) ;(3,0)$.
Try $(x-2)(x-3)(\bmod 5)$.
Value is 0 at 2 and 3 . Value is 2 at 1 . Not 1 ! Doh!!
So "Divide by 2 " or multiply by 3.
$\Delta_{1}(x)=(x-2)(x-3)(3)(\bmod 5)$ contains $(1,1) ;(2,0) ;(3,0)$.
$\Delta_{2}(x)=(x-1)(x-3)(4)(\bmod 5)$ contains $(1,0) ;(2,1) ;(3,0)$.
$\Delta_{3}(x)=(x-1)(x-2)(3)(\bmod 5)$ contains $(1,0) ;(2,0) ;(3,1)$.
But wanted to hit (1,2); $(2,4) ;(3,0)$!
$P(x)=2 \Delta_{1}(x)+4 \Delta_{2}(x)+0 \Delta_{3}(x)$ works.
Same as before?
...after a lot of calculations...

Another Construction: Interpolation!

For a quadratic, $a_{2} x^{2}+a_{1} x+a_{0}$ hits (1,2); (2,4); (3,0).
Find $\Delta_{1}(x)$ polynomial contains $(1,1) ;(2,0) ;(3,0)$.
Try $(x-2)(x-3)(\bmod 5)$.
Value is 0 at 2 and 3 . Value is 2 at 1 . Not 1 ! Doh!!
So "Divide by 2 " or multiply by 3.
$\Delta_{1}(x)=(x-2)(x-3)(3)(\bmod 5)$ contains $(1,1) ;(2,0) ;(3,0)$.
$\Delta_{2}(x)=(x-1)(x-3)(4)(\bmod 5)$ contains $(1,0) ;(2,1) ;(3,0)$.
$\Delta_{3}(x)=(x-1)(x-2)(3)(\bmod 5)$ contains $(1,0) ;(2,0) ;(3,1)$.
But wanted to hit (1,2); $(2,4) ;(3,0)$!
$P(x)=2 \Delta_{1}(x)+4 \Delta_{2}(x)+0 \Delta_{3}(x)$ works.
Same as before?
...after a lot of calculations... $P(x)=2 x^{2}+1 x+4 \bmod 5$.

Another Construction: Interpolation!

For a quadratic, $a_{2} x^{2}+a_{1} x+a_{0}$ hits (1,2); (2,4); (3,0).
Find $\Delta_{1}(x)$ polynomial contains $(1,1) ;(2,0) ;(3,0)$.
Try $(x-2)(x-3)(\bmod 5)$.
Value is 0 at 2 and 3 . Value is 2 at 1 . Not 1 ! Doh!!
So "Divide by 2 " or multiply by 3.
$\Delta_{1}(x)=(x-2)(x-3)(3)(\bmod 5)$ contains $(1,1) ;(2,0) ;(3,0)$.
$\Delta_{2}(x)=(x-1)(x-3)(4)(\bmod 5)$ contains $(1,0) ;(2,1) ;(3,0)$.
$\Delta_{3}(x)=(x-1)(x-2)(3)(\bmod 5)$ contains $(1,0) ;(2,0) ;(3,1)$.
But wanted to hit (1,2); $(2,4) ;(3,0)$!
$P(x)=2 \Delta_{1}(x)+4 \Delta_{2}(x)+0 \Delta_{3}(x)$ works.
Same as before?
...after a lot of calculations... $P(x)=2 x^{2}+1 x+4 \bmod 5$.
The same as before!

Fields.. .

Fields.. .

Flowers, and grass, oh so nice.

Fields.. .

Flowers, and grass, oh so nice.
Set and two commutative operations: addition and multiplication with additive/multiplicative identities and inverses expect for additive identity has no mulitplicative inverse.

Fields.. .

Flowers, and grass, oh so nice.
Set and two commutative operations: addition and multiplication with additive/multiplicative identities and inverses expect for additive identity has no mulitplicative inverse.
E.g., Reals, rationals, complex numbers.

Fields.. .

Flowers, and grass, oh so nice.
Set and two commutative operations: addition and multiplication with additive/multiplicative identities and inverses expect for additive identity has no mulitplicative inverse.
E.g., Reals, rationals, complex numbers. Not E.g., the integers, matrices.

Fields.. .

Flowers, and grass, oh so nice.
Set and two commutative operations: addition and multiplication with additive/multiplicative identities and inverses expect for additive identity has no mulitplicative inverse.
E.g., Reals, rationals, complex numbers. Not E.g., the integers, matrices.

Fields.. .

Flowers, and grass, oh so nice.
Set and two commutative operations: addition and multiplication with additive/multiplicative identities and inverses expect for additive identity has no mulitplicative inverse.
E.g., Reals, rationals, complex numbers. Not E.g., the integers, matrices.
We will work with polynomials with arithmetic modulo p.

Fields.. .

Flowers, and grass, oh so nice.
Set and two commutative operations: addition and multiplication with additive/multiplicative identities and inverses expect for additive identity has no mulitplicative inverse.
E.g., Reals, rationals, complex numbers. Not E.g., the integers, matrices.
We will work with polynomials with arithmetic modulo p.
Addition is cool.

Fields.. .

Flowers, and grass, oh so nice.
Set and two commutative operations: addition and multiplication with additive/multiplicative identities and inverses expect for additive identity has no mulitplicative inverse.
E.g., Reals, rationals, complex numbers. Not E.g., the integers, matrices.
We will work with polynomials with arithmetic modulo p.
Addition is cool. Inherited from integers and integer division (remainders).

Fields.. .

Flowers, and grass, oh so nice.
Set and two commutative operations: addition and multiplication with additive/multiplicative identities and inverses expect for additive identity has no mulitplicative inverse.
E.g., Reals, rationals, complex numbers. Not E.g., the integers, matrices.
We will work with polynomials with arithmetic modulo p.
Addition is cool. Inherited from integers and integer division (remainders).
Multiplicative inverses due to $\operatorname{gcd}(x, p)=1$, forall $x \in\{1, \ldots, p-1\}$

Delta Polynomials: Concept.

For set of x-values, x_{1}, \ldots, x_{d+1}.

Delta Polynomials: Concept.

For set of x-values, x_{1}, \ldots, x_{d+1}.

$$
\Delta_{i}(x)= \begin{cases}1, & \text { if } x=x_{i} \\ 0, & \text { if } x=x_{j} \text { for } j \neq i\end{cases}
$$

Delta Polynomials: Concept.

For set of x-values, x_{1}, \ldots, x_{d+1}.

$$
\Delta_{i}(x)= \begin{cases}1, & \text { if } x=x_{i} . \tag{1}\\ 0, & \text { if } x=x_{j} \text { for } j \neq i \\ ?, & \text { otherwise }\end{cases}
$$

Delta Polynomials: Concept.

For set of x-values, x_{1}, \ldots, x_{d+1}.

$$
\Delta_{i}(x)= \begin{cases}1, & \text { if } x=x_{i} . \tag{1}\\ 0, & \text { if } x=x_{j} \text { for } j \neq i \\ ?, & \text { otherwise }\end{cases}
$$

Given $d+1$ points, use Δ_{i} functions to go through points?

Delta Polynomials: Concept.

For set of x-values, x_{1}, \ldots, x_{d+1}.

$$
\Delta_{i}(x)= \begin{cases}1, & \text { if } x=x_{i} \tag{1}\\ 0, & \text { if } x=x_{j} \text { for } j \neq i \\ ?, & \text { otherwise }\end{cases}
$$

Given $d+1$ points, use Δ_{i} functions to go through points? $\left(x_{1}, y_{1}\right), \ldots,\left(x_{d+1}, y_{d+1}\right)$.

Delta Polynomials: Concept.

For set of x-values, x_{1}, \ldots, x_{d+1}.

$$
\Delta_{i}(x)= \begin{cases}1, & \text { if } x=x_{i} . \tag{1}\\ 0, & \text { if } x=x_{j} \text { for } j \neq i \\ ?, & \text { otherwise }\end{cases}
$$

Given $d+1$ points, use Δ_{i} functions to go through points?
$\left(x_{1}, y_{1}\right), \ldots,\left(x_{d+1}, y_{d+1}\right)$.
Will $y_{1} \Delta_{1}(x)$ contain $\left(x_{1}, y_{1}\right)$?

Delta Polynomials: Concept.

For set of x-values, x_{1}, \ldots, x_{d+1}.

$$
\Delta_{i}(x)= \begin{cases}1, & \text { if } x=x_{i} . \tag{1}\\ 0, & \text { if } x=x_{j} \text { for } j \neq i \\ ?, & \text { otherwise }\end{cases}
$$

Given $d+1$ points, use Δ_{i} functions to go through points?
$\left(x_{1}, y_{1}\right), \ldots,\left(x_{d+1}, y_{d+1}\right)$.
Will $y_{1} \Delta_{1}(x)$ contain $\left(x_{1}, y_{1}\right)$?
Will $y_{2} \Delta_{2}(x)$ contain $\left(x_{2}, y_{2}\right)$?

Delta Polynomials: Concept.

For set of x-values, x_{1}, \ldots, x_{d+1}.

$$
\Delta_{i}(x)= \begin{cases}1, & \text { if } x=x_{i} \tag{1}\\ 0, & \text { if } x=x_{j} \text { for } j \neq i \\ ?, & \text { otherwise }\end{cases}
$$

Given $d+1$ points, use Δ_{i} functions to go through points?
$\left(x_{1}, y_{1}\right), \ldots,\left(x_{d+1}, y_{d+1}\right)$.
Will $y_{1} \Delta_{1}(x)$ contain $\left(x_{1}, y_{1}\right)$?
Will $y_{2} \Delta_{2}(x)$ contain $\left(x_{2}, y_{2}\right)$?
Does $y_{1} \Delta_{1}(x)+y_{2} \Delta_{2}(x)$ contain

Delta Polynomials: Concept.

For set of x-values, x_{1}, \ldots, x_{d+1}.

$$
\Delta_{i}(x)= \begin{cases}1, & \text { if } x=x_{i} \tag{1}\\ 0, & \text { if } x=x_{j} \text { for } j \neq i \\ ?, & \text { otherwise }\end{cases}
$$

Given $d+1$ points, use Δ_{i} functions to go through points?
$\left(x_{1}, y_{1}\right), \ldots,\left(x_{d+1}, y_{d+1}\right)$.
Will $y_{1} \Delta_{1}(x)$ contain $\left(x_{1}, y_{1}\right)$?
Will $y_{2} \Delta_{2}(x)$ contain $\left(x_{2}, y_{2}\right)$?
Does $y_{1} \Delta_{1}(x)+y_{2} \Delta_{2}(x)$ contain $\left(x_{1}, y_{1}\right) ?$

Delta Polynomials: Concept.

For set of x-values, x_{1}, \ldots, x_{d+1}.

$$
\Delta_{i}(x)= \begin{cases}1, & \text { if } x=x_{i} \tag{1}\\ 0, & \text { if } x=x_{j} \text { for } j \neq i \\ ?, & \text { otherwise }\end{cases}
$$

Given $d+1$ points, use Δ_{i} functions to go through points?
$\left(x_{1}, y_{1}\right), \ldots,\left(x_{d+1}, y_{d+1}\right)$.
Will $y_{1} \Delta_{1}(x)$ contain $\left(x_{1}, y_{1}\right)$?
Will $y_{2} \Delta_{2}(x)$ contain $\left(x_{2}, y_{2}\right)$?
Does $y_{1} \Delta_{1}(x)+y_{2} \Delta_{2}(x)$ contain
$\left(x_{1}, y_{1}\right)$? and $\left(x_{2}, y_{2}\right)$?

Delta Polynomials: Concept.

For set of x-values, x_{1}, \ldots, x_{d+1}.

$$
\Delta_{i}(x)= \begin{cases}1, & \text { if } x=x_{i} \tag{1}\\ 0, & \text { if } x=x_{j} \text { for } j \neq i \\ ?, & \text { otherwise }\end{cases}
$$

Given $d+1$ points, use Δ_{i} functions to go through points?
$\left(x_{1}, y_{1}\right), \ldots,\left(x_{d+1}, y_{d+1}\right)$.
Will $y_{1} \Delta_{1}(x)$ contain $\left(x_{1}, y_{1}\right)$?
Will $y_{2} \Delta_{2}(x)$ contain $\left(x_{2}, y_{2}\right)$?
Does $y_{1} \Delta_{1}(x)+y_{2} \Delta_{2}(x)$ contain
$\left(x_{1}, y_{1}\right)$? and $\left(x_{2}, y_{2}\right)$?
See the idea?

Delta Polynomials: Concept.

For set of x-values, x_{1}, \ldots, x_{d+1}.

$$
\Delta_{i}(x)= \begin{cases}1, & \text { if } x=x_{i} \tag{1}\\ 0, & \text { if } x=x_{j} \text { for } j \neq i \\ ?, & \text { otherwise }\end{cases}
$$

Given $d+1$ points, use Δ_{i} functions to go through points?
$\left(x_{1}, y_{1}\right), \ldots,\left(x_{d+1}, y_{d+1}\right)$.
Will $y_{1} \Delta_{1}(x)$ contain $\left(x_{1}, y_{1}\right)$?
Will $y_{2} \Delta_{2}(x)$ contain $\left(x_{2}, y_{2}\right)$?
Does $y_{1} \Delta_{1}(x)+y_{2} \Delta_{2}(x)$ contain
$\left(x_{1}, y_{1}\right)$? and $\left(x_{2}, y_{2}\right)$?
See the idea? Function that contains all points?

Delta Polynomials: Concept.

For set of x-values, x_{1}, \ldots, x_{d+1}.

$$
\Delta_{i}(x)= \begin{cases}1, & \text { if } x=x_{i} \tag{1}\\ 0, & \text { if } x=x_{j} \text { for } j \neq i \\ ?, & \text { otherwise }\end{cases}
$$

Given $d+1$ points, use Δ_{i} functions to go through points?
$\left(x_{1}, y_{1}\right), \ldots,\left(x_{d+1}, y_{d+1}\right)$.
Will $y_{1} \Delta_{1}(x)$ contain $\left(x_{1}, y_{1}\right)$?
Will $y_{2} \Delta_{2}(x)$ contain $\left(x_{2}, y_{2}\right)$?
Does $y_{1} \Delta_{1}(x)+y_{2} \Delta_{2}(x)$ contain $\left(x_{1}, y_{1}\right) ?$ and $\left(x_{2}, y_{2}\right)$?
See the idea? Function that contains all points?

$$
P(x)=y_{1} \Delta_{1}(x)+y_{2} \Delta_{2}(x)
$$

Delta Polynomials: Concept.

For set of x-values, x_{1}, \ldots, x_{d+1}.

$$
\Delta_{i}(x)= \begin{cases}1, & \text { if } x=x_{i} \tag{1}\\ 0, & \text { if } x=x_{j} \text { for } j \neq i \\ ?, & \text { otherwise }\end{cases}
$$

Given $d+1$ points, use Δ_{i} functions to go through points?
$\left(x_{1}, y_{1}\right), \ldots,\left(x_{d+1}, y_{d+1}\right)$.
Will $y_{1} \Delta_{1}(x)$ contain $\left(x_{1}, y_{1}\right)$?
Will $y_{2} \Delta_{2}(x)$ contain $\left(x_{2}, y_{2}\right)$?
Does $y_{1} \Delta_{1}(x)+y_{2} \Delta_{2}(x)$ contain $\left(x_{1}, y_{1}\right) ?$ and $\left(x_{2}, y_{2}\right)$?
See the idea? Function that contains all points?

$$
P(x)=y_{1} \Delta_{1}(x)+y_{2} \Delta_{2}(x) \ldots+y_{d+1} \Delta_{d+1}(x) .
$$

There exists a polynomial...

There exists a polynomial...

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d+1$ pts.

There exists a polynomial...

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d+1$ pts.
Proof of at least one polynomial:
Given points: $\left(x_{1}, y_{1}\right) ;\left(x_{2}, y_{2}\right) \cdots\left(x_{d+1}, y_{d+1}\right)$.

There exists a polynomial...

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d+1$ pts.

Proof of at least one polynomial:

Given points: $\left(x_{1}, y_{1}\right) ;\left(x_{2}, y_{2}\right) \cdots\left(x_{d+1}, y_{d+1}\right)$.

$$
\Delta_{i}(x)=\frac{\prod_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)}
$$

There exists a polynomial...

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d+1$ pts.

Proof of at least one polynomial:

Given points: $\left(x_{1}, y_{1}\right) ;\left(x_{2}, y_{2}\right) \cdots\left(x_{d+1}, y_{d+1}\right)$.

$$
\Delta_{i}(x)=\frac{\prod_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)}=\prod_{j \neq i}\left(x-x_{j}\right) \prod_{j \neq i}\left(x_{i}-x_{j}\right)^{-1}
$$

There exists a polynomial...

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d+1$ pts.

Proof of at least one polynomial:

Given points: $\left(x_{1}, y_{1}\right) ;\left(x_{2}, y_{2}\right) \cdots\left(x_{d+1}, y_{d+1}\right)$.

$$
\Delta_{i}(x)=\frac{\prod_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)}=\prod_{j \neq i}\left(x-x_{j}\right) \prod_{j \neq i}\left(x_{i}-x_{j}\right)^{-1}
$$

Numerator is 0 at $x_{j} \neq x_{i}$.

There exists a polynomial...

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d+1$ pts.

Proof of at least one polynomial:

Given points: $\left(x_{1}, y_{1}\right) ;\left(x_{2}, y_{2}\right) \cdots\left(x_{d+1}, y_{d+1}\right)$.

$$
\Delta_{i}(x)=\frac{\prod_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)}=\prod_{j \neq i}\left(x-x_{j}\right) \prod_{j \neq i}\left(x_{i}-x_{j}\right)^{-1}
$$

Numerator is 0 at $x_{j} \neq x_{i}$.
"Denominator" makes it 1 at x_{i}.

There exists a polynomial...

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d+1$ pts.

Proof of at least one polynomial:

Given points: $\left(x_{1}, y_{1}\right) ;\left(x_{2}, y_{2}\right) \cdots\left(x_{d+1}, y_{d+1}\right)$.

$$
\Delta_{i}(x)=\frac{\prod_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)}=\prod_{j \neq i}\left(x-x_{j}\right) \prod_{j \neq i}\left(x_{i}-x_{j}\right)^{-1}
$$

Numerator is 0 at $x_{j} \neq x_{i}$.
"Denominator" makes it 1 at x_{i}.
And..

$$
P(x)=y_{1} \Delta_{1}(x)+y_{2} \Delta_{2}(x)+\cdots+y_{d+1} \Delta_{d+1}(x) .
$$

There exists a polynomial...

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d+1$ pts.

Proof of at least one polynomial:

Given points: $\left(x_{1}, y_{1}\right) ;\left(x_{2}, y_{2}\right) \cdots\left(x_{d+1}, y_{d+1}\right)$.

$$
\Delta_{i}(x)=\frac{\prod_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)}=\prod_{j \neq i}\left(x-x_{j}\right) \prod_{j \neq i}\left(x_{i}-x_{j}\right)^{-1}
$$

Numerator is 0 at $x_{j} \neq x_{i}$.
"Denominator" makes it 1 at x_{i}.
And..

$$
P(x)=y_{1} \Delta_{1}(x)+y_{2} \Delta_{2}(x)+\cdots+y_{d+1} \Delta_{d+1}(x) .
$$

hits points $\left(x_{1}, y_{1}\right) ;\left(x_{2}, y_{2}\right) \cdots\left(x_{d+1}, y_{d+1}\right)$.

There exists a polynomial...

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d+1$ pts.

Proof of at least one polynomial:

Given points: $\left(x_{1}, y_{1}\right) ;\left(x_{2}, y_{2}\right) \cdots\left(x_{d+1}, y_{d+1}\right)$.

$$
\Delta_{i}(x)=\frac{\prod_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)}=\prod_{j \neq i}\left(x-x_{j}\right) \prod_{j \neq i}\left(x_{i}-x_{j}\right)^{-1}
$$

Numerator is 0 at $x_{j} \neq x_{i}$.
"Denominator" makes it 1 at x_{i}.
And..

$$
P(x)=y_{1} \Delta_{1}(x)+y_{2} \Delta_{2}(x)+\cdots+y_{d+1} \Delta_{d+1}(x) .
$$

hits points $\left(x_{1}, y_{1}\right) ;\left(x_{2}, y_{2}\right) \cdots\left(x_{d+1}, y_{d+1}\right)$. Degree d polynomial!

There exists a polynomial...

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d+1$ pts.

Proof of at least one polynomial:

Given points: $\left(x_{1}, y_{1}\right) ;\left(x_{2}, y_{2}\right) \cdots\left(x_{d+1}, y_{d+1}\right)$.

$$
\Delta_{i}(x)=\frac{\prod_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)}=\prod_{j \neq i}\left(x-x_{j}\right) \prod_{j \neq i}\left(x_{i}-x_{j}\right)^{-1}
$$

Numerator is 0 at $x_{j} \neq x_{i}$.
"Denominator" makes it 1 at x_{i}.
And..

$$
P(x)=y_{1} \Delta_{1}(x)+y_{2} \Delta_{2}(x)+\cdots+y_{d+1} \Delta_{d+1}(x) .
$$

hits points $\left(x_{1}, y_{1}\right) ;\left(x_{2}, y_{2}\right) \cdots\left(x_{d+1}, y_{d+1}\right)$. Degree d polynomial!
Construction proves the existence of a polynomial!

Poll

Mark what's true.

Poll

Mark what's true.
(A) $\Delta_{1}\left(x_{1}\right)=y_{1}$
(B) $\Delta_{1}\left(x_{1}\right)=1$
(C) $\Delta_{1}\left(x_{2}\right)=0$
(D) $\Delta_{1}\left(x_{3}\right)=1$
(E) $\Delta_{2}\left(x_{2}\right)=1$
(F) $\Delta_{2}\left(x_{1}\right)=0$

Poll

Mark what's true.
(A) $\Delta_{1}\left(x_{1}\right)=y_{1}$
(B) $\Delta_{1}\left(x_{1}\right)=1$
(C) $\Delta_{1}\left(x_{2}\right)=0$
(D) $\Delta_{1}\left(x_{3}\right)=1$
(E) $\Delta_{2}\left(x_{2}\right)=1$
(F) $\Delta_{2}\left(x_{1}\right)=0$
(B), (C), and (E)

Example.

$$
\Delta_{i}(x)=\frac{\prod_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)} .
$$

Example.

$$
\Delta_{i}(x)=\frac{\prod_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)} .
$$

Degree 1 polynomial, $P(x)$, that contains $(1,3)$ and $(3,4)$?

Example.

$$
\Delta_{i}(x)=\frac{\prod_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)}
$$

Degree 1 polynomial, $P(x)$, that contains $(1,3)$ and $(3,4)$?
Work modulo 5.

Example.

$$
\Delta_{i}(x)=\frac{\prod_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)}
$$

Degree 1 polynomial, $P(x)$, that contains $(1,3)$ and $(3,4)$?
Work modulo 5.
$\Delta_{1}(x)$ contains (1, 1$)$ and (3,0).

Example.

$$
\Delta_{i}(x)=\frac{\prod_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)}
$$

Degree 1 polynomial, $P(x)$, that contains $(1,3)$ and $(3,4)$?
Work modulo 5.
$\Delta_{1}(x)$ contains (1,1) and (3,0).
$\Delta_{1}(x)=\frac{(x-3)}{1-3}=\frac{x-3}{-2}=(x-3)(-2)^{-1}$

Example.

$$
\Delta_{i}(x)=\frac{\prod_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)}
$$

Degree 1 polynomial, $P(x)$, that contains $(1,3)$ and $(3,4)$?
Work modulo 5.
$\Delta_{1}(x)$ contains $(1,1)$ and (3,0).
$\Delta_{1}(x)=\frac{(x-3)}{1-3}=\frac{x-3}{-2}=(x-3)(-2)^{-1}$
$\Delta_{1}(x)=(x-3)(1-3)^{-1}=(x-3)(-2)^{-1}$

Example.

$$
\Delta_{i}(x)=\frac{\prod_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)}
$$

Degree 1 polynomial, $P(x)$, that contains $(1,3)$ and $(3,4)$?
Work modulo 5.
$\Delta_{1}(x)$ contains $(1,1)$ and (3,0).

$$
\begin{aligned}
\Delta_{1}(x) & =\frac{(x-3)}{1-3}=\frac{x-3}{-2}=(x-3)(-2)^{-1} \\
\Delta_{1}(x) & =(x-3)(1-3)^{-1}=(x-3)(-2)^{-1} \\
& =2(x-3)
\end{aligned}
$$

Example.

$$
\Delta_{i}(x)=\frac{\prod_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)}
$$

Degree 1 polynomial, $P(x)$, that contains $(1,3)$ and $(3,4)$?
Work modulo 5.
$\Delta_{1}(x)$ contains $(1,1)$ and (3,0).

$$
\begin{aligned}
\Delta_{1}(x) & =\frac{(x-3)}{1-3}=\frac{x-3}{-2}=(x-3)(-2)^{-1} \\
\Delta_{1}(x) & =(x-3)(1-3)^{-1}=(x-3)(-2)^{-1} \\
& =2(x-3)=2 x-6
\end{aligned}
$$

Example.

$$
\Delta_{i}(x)=\frac{\prod_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)}
$$

Degree 1 polynomial, $P(x)$, that contains $(1,3)$ and $(3,4)$?
Work modulo 5.
$\Delta_{1}(x)$ contains $(1,1)$ and (3,0).

$$
\begin{aligned}
\Delta_{1}(x) & =\frac{(x-3)}{1-3}=\frac{x-3}{-2}=(x-3)(-2)^{-1} \\
\Delta_{1}(x) & =(x-3)(1-3)^{-1}=(x-3)(-2)^{-1} \\
& =2(x-3)=2 x-6=2 x+4(\bmod 5) .
\end{aligned}
$$

Example.

$$
\Delta_{i}(x)=\frac{\prod_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)}
$$

Degree 1 polynomial, $P(x)$, that contains $(1,3)$ and $(3,4)$?
Work modulo 5.
$\Delta_{1}(x)$ contains $(1,1)$ and (3,0).

$$
\begin{aligned}
\Delta_{1}(x) & =\frac{(x-3)}{1-3}=\frac{x-3}{-2}=(x-3)(-2)^{-1} \\
\Delta_{1}(x) & =(x-3)(1-3)^{-1}=(x-3)(-2)^{-1} \\
& =2(x-3)=2 x-6=2 x+4(\bmod 5) .
\end{aligned}
$$

For a quadratic, $a_{2} x^{2}+a_{1} x+a_{0}$ hits $(1,3) ;(2,4) ;(3,0)$.

Example.

$$
\Delta_{i}(x)=\frac{\prod_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)}
$$

Degree 1 polynomial, $P(x)$, that contains $(1,3)$ and $(3,4)$?
Work modulo 5.
$\Delta_{1}(x)$ contains $(1,1)$ and (3,0).

$$
\begin{aligned}
\Delta_{1}(x) & =\frac{(x-3)}{1-3}=\frac{x-3}{-2}=(x-3)(-2)^{-1} \\
\Delta_{1}(x) & =(x-3)(1-3)^{-1}=(x-3)(-2)^{-1} \\
& =2(x-3)=2 x-6=2 x+4(\bmod 5) .
\end{aligned}
$$

For a quadratic, $a_{2} x^{2}+a_{1} x+a_{0}$ hits (1,3); (2,4); (3,0).
Work modulo 5.

Example.

$$
\Delta_{i}(x)=\frac{\prod_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)} .
$$

Degree 1 polynomial, $P(x)$, that contains $(1,3)$ and $(3,4)$?
Work modulo 5.
$\Delta_{1}(x)$ contains $(1,1)$ and (3,0).

$$
\begin{aligned}
\Delta_{1}(x) & =\frac{(x-3)}{1-3}=\frac{x-3}{-2}=(x-3)(-2)^{-1} \\
\Delta_{1}(x) & =(x-3)(1-3)^{-1}=(x-3)(-2)^{-1} \\
& =2(x-3)=2 x-6=2 x+4(\bmod 5) .
\end{aligned}
$$

For a quadratic, $a_{2} x^{2}+a_{1} x+a_{0}$ hits (1,3); (2,4); (3,0).
Work modulo 5.
Find $\Delta_{1}(x)$ polynomial contains (1, 1); $(2,0) ;(3,0)$.

Example.

$$
\Delta_{i}(x)=\frac{\prod_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)} .
$$

Degree 1 polynomial, $P(x)$, that contains $(1,3)$ and $(3,4)$?
Work modulo 5.
$\Delta_{1}(x)$ contains $(1,1)$ and (3,0).

$$
\begin{aligned}
\Delta_{1}(x) & =\frac{(x-3)}{1-3}=\frac{x-3}{-2}=(x-3)(-2)^{-1} \\
\Delta_{1}(x) & =(x-3)(1-3)^{-1}=(x-3)(-2)^{-1} \\
& =2(x-3)=2 x-6=2 x+4(\bmod 5) .
\end{aligned}
$$

For a quadratic, $a_{2} x^{2}+a_{1} x+a_{0}$ hits (1,3); (2,4); (3,0).
Work modulo 5.
Find $\Delta_{1}(x)$ polynomial contains (1,1); $(2,0) ;(3,0)$.
$\Delta_{1}(x)=\frac{(x-2)(x-3)}{(1-2)(1-3)}$

Example.

$$
\Delta_{i}(x)=\frac{\prod_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)} .
$$

Degree 1 polynomial, $P(x)$, that contains $(1,3)$ and $(3,4)$?
Work modulo 5.
$\Delta_{1}(x)$ contains $(1,1)$ and (3,0).

$$
\begin{aligned}
\Delta_{1}(x) & =\frac{(x-3)}{1-3}=\frac{x-3}{-2}=(x-3)(-2)^{-1} \\
\Delta_{1}(x) & =(x-3)(1-3)^{-1}=(x-3)(-2)^{-1} \\
& =2(x-3)=2 x-6=2 x+4(\bmod 5) .
\end{aligned}
$$

For a quadratic, $a_{2} x^{2}+a_{1} x+a_{0}$ hits (1,3); (2,4); (3,0).
Work modulo 5.
Find $\Delta_{1}(x)$ polynomial contains $(1,1) ;(2,0) ;(3,0)$.
$\Delta_{1}(x)=\frac{(x-2)(x-3)}{(1-2)(1-3)}=\frac{(x-2)(x-3)}{2}$

Example.

$$
\Delta_{i}(x)=\frac{\prod_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)} .
$$

Degree 1 polynomial, $P(x)$, that contains $(1,3)$ and $(3,4)$?
Work modulo 5.
$\Delta_{1}(x)$ contains $(1,1)$ and (3,0).

$$
\begin{aligned}
\Delta_{1}(x) & =\frac{(x-3)}{1-3}=\frac{x-3}{-2}=(x-3)(-2)^{-1} \\
\Delta_{1}(x) & =(x-3)(1-3)^{-1}=(x-3)(-2)^{-1} \\
& =2(x-3)=2 x-6=2 x+4(\bmod 5) .
\end{aligned}
$$

For a quadratic, $a_{2} x^{2}+a_{1} x+a_{0}$ hits (1,3); (2,4); (3,0).
Work modulo 5.
Find $\Delta_{1}(x)$ polynomial contains $(1,1) ;(2,0) ;(3,0)$.
$\Delta_{1}(x)=\frac{(x-2)(x-3)}{(1-2)(1-3)}=\frac{(x-2)(x-3)}{2}=(2)^{-1}(x-2)(x-3)$

Example.

$$
\Delta_{i}(x)=\frac{\prod_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)} .
$$

Degree 1 polynomial, $P(x)$, that contains $(1,3)$ and $(3,4)$?
Work modulo 5.
$\Delta_{1}(x)$ contains $(1,1)$ and (3,0).

$$
\begin{aligned}
\Delta_{1}(x) & =\frac{(x-3)}{1-3}=\frac{x-3}{-2}=(x-3)(-2)^{-1} \\
\Delta_{1}(x) & =(x-3)(1-3)^{-1}=(x-3)(-2)^{-1} \\
& =2(x-3)=2 x-6=2 x+4(\bmod 5) .
\end{aligned}
$$

For a quadratic, $a_{2} x^{2}+a_{1} x+a_{0}$ hits (1,3); (2,4); (3,0).
Work modulo 5.
Find $\Delta_{1}(x)$ polynomial contains (1,1); $(2,0) ;(3,0)$.
$\Delta_{1}(x)=\frac{(x-2)(x-3)}{(1-2)(1-3)}=\frac{(x-2)(x-3)}{2}=(2)^{-1}(x-2)(x-3)=3(x-2)(x-3)$

Example.

$$
\Delta_{i}(x)=\frac{\prod_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)} .
$$

Degree 1 polynomial, $P(x)$, that contains $(1,3)$ and $(3,4)$?
Work modulo 5.
$\Delta_{1}(x)$ contains $(1,1)$ and (3,0).

$$
\begin{aligned}
\Delta_{1}(x) & =\frac{(x-3)}{1-3}=\frac{x-3}{-2}=(x-3)(-2)^{-1} \\
\Delta_{1}(x) & =(x-3)(1-3)^{-1}=(x-3)(-2)^{-1} \\
& =2(x-3)=2 x-6=2 x+4(\bmod 5) .
\end{aligned}
$$

For a quadratic, $a_{2} x^{2}+a_{1} x+a_{0}$ hits (1,3); (2,4); (3,0).
Work modulo 5.
Find $\Delta_{1}(x)$ polynomial contains $(1,1) ;(2,0) ;(3,0)$.

$$
\begin{gathered}
\Delta_{1}(x)=\frac{(x-2)(x-3)}{(1-2)(1-3)}=\frac{(x-2)(x-3)}{2}=(2)^{-1}(x-2)(x-3)=3(x-2)(x-3) \\
=3 x^{2}+3(\bmod 5)
\end{gathered}
$$

Example.

$$
\Delta_{i}(x)=\frac{\prod_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)} .
$$

Degree 1 polynomial, $P(x)$, that contains $(1,3)$ and $(3,4)$?
Work modulo 5.
$\Delta_{1}(x)$ contains $(1,1)$ and (3,0).

$$
\begin{aligned}
\Delta_{1}(x) & =\frac{(x-3)}{1-3}=\frac{x-3}{-2}=(x-3)(-2)^{-1} \\
\Delta_{1}(x) & =(x-3)(1-3)^{-1}=(x-3)(-2)^{-1} \\
& =2(x-3)=2 x-6=2 x+4(\bmod 5) .
\end{aligned}
$$

For a quadratic, $a_{2} x^{2}+a_{1} x+a_{0}$ hits (1,3); (2,4); (3,0).
Work modulo 5.
Find $\Delta_{1}(x)$ polynomial contains $(1,1) ;(2,0) ;(3,0)$.

$$
\begin{gathered}
\Delta_{1}(x)=\frac{(x-2)(x-3)}{(1-2)(1-3)}=\frac{(x-2)(x-3)}{2}=(2)^{-1}(x-2)(x-3)=3(x-2)(x-3) \\
=3 x^{2}+3(\bmod 5)
\end{gathered}
$$

Example.

$$
\Delta_{i}(x)=\frac{\prod_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)} .
$$

Degree 1 polynomial, $P(x)$, that contains $(1,3)$ and $(3,4)$?
Work modulo 5.
$\Delta_{1}(x)$ contains $(1,1)$ and (3,0).

$$
\begin{aligned}
\Delta_{1}(x) & =\frac{(x-3)}{1-3}=\frac{x-3}{-2}=(x-3)(-2)^{-1} \\
\Delta_{1}(x) & =(x-3)(1-3)^{-1}=(x-3)(-2)^{-1} \\
& =2(x-3)=2 x-6=2 x+4(\bmod 5) .
\end{aligned}
$$

For a quadratic, $a_{2} x^{2}+a_{1} x+a_{0}$ hits (1,3); (2,4); (3,0).
Work modulo 5.
Find $\Delta_{1}(x)$ polynomial contains (1,1); $(2,0) ;(3,0)$.

$$
\begin{gathered}
\Delta_{1}(x)=\frac{(x-2)(x-3)}{(1-2)(1-3)}=\frac{(x-2)(x-3)}{2}=(2)^{-1}(x-2)(x-3)=3(x-2)(x-3) \\
=3 x^{2}+3(\bmod 5)
\end{gathered}
$$

Put the delta functions together.

In general.

Given points: $\left(x_{1}, y_{1}\right) ;\left(x_{2}, y_{2}\right) \cdots\left(x_{k}, y_{k}\right)$.

In general.

Given points: $\left(x_{1}, y_{1}\right) ;\left(x_{2}, y_{2}\right) \cdots\left(x_{k}, y_{k}\right)$.

$$
\Delta_{i}(x)=\frac{\prod_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)}
$$

In general.

Given points: $\left(x_{1}, y_{1}\right) ;\left(x_{2}, y_{2}\right) \cdots\left(x_{k}, y_{k}\right)$.

$$
\Delta_{i}(x)=\frac{\prod_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)}=\prod_{j \neq i}\left(x-x_{j}\right) \prod_{j \neq i}\left(x_{i}-x_{j}\right)^{-1}
$$

In general.

Given points: $\left(x_{1}, y_{1}\right) ;\left(x_{2}, y_{2}\right) \cdots\left(x_{k}, y_{k}\right)$.

$$
\Delta_{i}(x)=\frac{\prod_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)}=\prod_{j \neq i}\left(x-x_{j}\right) \prod_{j \neq i}\left(x_{i}-x_{j}\right)^{-1}
$$

In general.

Given points: $\left(x_{1}, y_{1}\right) ;\left(x_{2}, y_{2}\right) \cdots\left(x_{k}, y_{k}\right)$.

$$
\Delta_{i}(x)=\frac{\prod_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)}=\prod_{j \neq i}\left(x-x_{j}\right) \prod_{j \neq i}\left(x_{i}-x_{j}\right)^{-1}
$$

Numerator is 0 at $x_{j} \neq x_{i}$.

In general.

Given points: $\left(x_{1}, y_{1}\right) ;\left(x_{2}, y_{2}\right) \cdots\left(x_{k}, y_{k}\right)$.

$$
\Delta_{i}(x)=\frac{\prod_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)}=\prod_{j \neq i}\left(x-x_{j}\right) \prod_{j \neq i}\left(x_{i}-x_{j}\right)^{-1}
$$

Numerator is 0 at $x_{j} \neq x_{i}$.
Denominator makes it 1 at x_{i}.

In general.

Given points: $\left(x_{1}, y_{1}\right) ;\left(x_{2}, y_{2}\right) \cdots\left(x_{k}, y_{k}\right)$.

$$
\Delta_{i}(x)=\frac{\prod_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)}=\prod_{j \neq i}\left(x-x_{j}\right) \prod_{j \neq i}\left(x_{i}-x_{j}\right)^{-1}
$$

Numerator is 0 at $x_{j} \neq x_{i}$.
Denominator makes it 1 at x_{i}.
And..

$$
P(x)=y_{1} \Delta_{1}(x)+y_{2} \Delta_{2}(x)+\cdots+y_{k} \Delta_{k}(x) .
$$

hits points $\left(x_{1}, y_{1}\right) ;\left(x_{2}, y_{2}\right) \cdots\left(x_{k}, y_{k}\right)$.

In general.

Given points: $\left(x_{1}, y_{1}\right) ;\left(x_{2}, y_{2}\right) \cdots\left(x_{k}, y_{k}\right)$.

$$
\Delta_{i}(x)=\frac{\prod_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)}=\prod_{j \neq i}\left(x-x_{j}\right) \prod_{j \neq i}\left(x_{i}-x_{j}\right)^{-1}
$$

Numerator is 0 at $x_{j} \neq x_{i}$.
Denominator makes it 1 at x_{i}.
And..

$$
P(x)=y_{1} \Delta_{1}(x)+y_{2} \Delta_{2}(x)+\cdots+y_{k} \Delta_{k}(x) .
$$

hits points $\left(x_{1}, y_{1}\right) ;\left(x_{2}, y_{2}\right) \cdots\left(x_{k}, y_{k}\right)$.
Construction proves the existence of the polynomial!

Uniqueness.

Uniqueness Fact. At most one degree d polynomial hits $d+1$ points.

Uniqueness.

Uniqueness Fact. At most one degree d polynomial hits $d+1$ points.

Uniqueness.

Uniqueness Fact. At most one degree d polynomial hits $d+1$ points.
Roots fact: Any nontrivial degree d polynomial has at most d roots.

Uniqueness.

Uniqueness Fact. At most one degree d polynomial hits $d+1$ points.
Roots fact: Any nontrivial degree d polynomial has at most d roots.
Non-zero line (degree 1 polynomial) can intersect $y=0$ at only one x.

Uniqueness.

Uniqueness Fact. At most one degree d polynomial hits $d+1$ points.
Roots fact: Any nontrivial degree d polynomial has at most d roots.
Non-zero line (degree 1 polynomial) can intersect $y=0$ at only one x.
A parabola (degree 2), can intersect $y=0$ at only two x 's.

Uniqueness.

Uniqueness Fact. At most one degree d polynomial hits $d+1$ points.
Roots fact: Any nontrivial degree d polynomial has at most d roots.
Non-zero line (degree 1 polynomial) can intersect $y=0$ at only one x.
A parabola (degree 2), can intersect $y=0$ at only two x 's.
Proof:
Assume two different polynomials $Q(x)$ and $P(x)$ hit the points.

Uniqueness.

Uniqueness Fact. At most one degree d polynomial hits $d+1$ points.
Roots fact: Any nontrivial degree d polynomial has at most d roots.
Non-zero line (degree 1 polynomial) can intersect $y=0$ at only one x.
A parabola (degree 2), can intersect $y=0$ at only two x 's.
Proof:
Assume two different polynomials $Q(x)$ and $P(x)$ hit the points.
$R(x)=Q(x)-P(x)$ has $d+1$ roots and is degree d.

Uniqueness.

Uniqueness Fact. At most one degree d polynomial hits $d+1$ points.
Roots fact: Any nontrivial degree d polynomial has at most d roots.
Non-zero line (degree 1 polynomial) can intersect $y=0$ at only one x.
A parabola (degree 2), can intersect $y=0$ at only two x 's.
Proof:
Assume two different polynomials $Q(x)$ and $P(x)$ hit the points.
$R(x)=Q(x)-P(x)$ has $d+1$ roots and is degree d.
Contradiction.

Uniqueness.

Uniqueness Fact. At most one degree d polynomial hits $d+1$ points.
Roots fact: Any nontrivial degree d polynomial has at most d roots.
Non-zero line (degree 1 polynomial) can intersect $y=0$ at only one x.
A parabola (degree 2), can intersect $y=0$ at only two x 's.
Proof:
Assume two different polynomials $Q(x)$ and $P(x)$ hit the points.
$R(x)=Q(x)-P(x)$ has $d+1$ roots and is degree d.
Contradiction.

Uniqueness.

Uniqueness Fact. At most one degree d polynomial hits $d+1$ points.
Roots fact: Any nontrivial degree d polynomial has at most d roots.
Non-zero line (degree 1 polynomial) can intersect $y=0$ at only one x.
A parabola (degree 2), can intersect $y=0$ at only two x 's.
Proof:
Assume two different polynomials $Q(x)$ and $P(x)$ hit the points.
$R(x)=Q(x)-P(x)$ has $d+1$ roots and is degree d.
Contradiction.
Must prove Roots fact.

Polynomial Division.

Divide $4 x^{2}-3 x+2$ by $(x-3)$ modulo 5 .

Polynomial Division.

Divide $4 x^{2}-3 x+2$ by $(x-3)$ modulo 5 .

$$
\begin{gathered}
4 x \\
x-3) 4 x^{\wedge} 2-3 x+2
\end{gathered}
$$

Polynomial Division.

Divide $4 x^{2}-3 x+2$ by $(x-3)$ modulo 5 .

$$
\begin{gathered}
4 x \\
x-3) \begin{array}{c}
------------1 \\
4 x^{\wedge} 2-3 x+2 \\
4 x^{\wedge} 2-2 x
\end{array}
\end{gathered}
$$

Polynomial Division.

Divide $4 x^{2}-3 x+2$ by $(x-3)$ modulo 5 .

$$
\begin{aligned}
& 4 x+4 \\
& x-3) 4 x^{\wedge} 2-3 x+2 \\
& 4 x^{\wedge} 2-2 x \\
& 4 x+2
\end{aligned}
$$

Polynomial Division.

Divide $4 x^{2}-3 x+2$ by $(x-3)$ modulo 5 .

$$
\begin{aligned}
& 4 x+4 \\
& x-3) 4 x^{\wedge} 2-3 x+2 \\
& 4 x^{\wedge} 2-2 x \\
& 4 x+2 \\
& 4 x-2
\end{aligned}
$$

Polynomial Division.

Divide $4 x^{2}-3 x+2$ by $(x-3)$ modulo 5 .

$$
\begin{aligned}
& 4 x+4 \\
& x-3) 4 x^{\wedge} 2-3 x+2 \\
& 4 x^{\wedge} 2-2 x \\
& 4 x+2 \\
& 4 x-2 \\
& \begin{array}{r}
------- \\
4
\end{array}
\end{aligned}
$$

Polynomial Division.

Divide $4 x^{2}-3 x+2$ by $(x-3)$ modulo 5 .

$$
\begin{aligned}
& 4 x+4 r 4 \\
& x-3) 4 x^{\wedge} 2-3 x+2 \\
& 4 x^{\wedge} 2-2 x \\
& 4 x+2 \\
& 4 x-2 \\
& \begin{array}{r}
------ \\
4
\end{array}
\end{aligned}
$$

Polynomial Division.

Divide $4 x^{2}-3 x+2$ by $(x-3)$ modulo 5 .

$$
4 x^{2}-3 x+2 \equiv(x-3)(4 x+4)+4(\bmod 5)
$$

$$
\begin{aligned}
& 4 x+4 r 4 \\
& x-3) 4 x^{\wedge} 2-3 x+2 \\
& 4 x^{\wedge} 2-2 x \\
& \text {---------- } \\
& 4 x+2 \\
& 4 x-2 \\
& \begin{array}{r}
------ \\
4
\end{array}
\end{aligned}
$$

Polynomial Division.

Divide $4 x^{2}-3 x+2$ by $(x-3)$ modulo 5 .

$$
\begin{aligned}
& 4 x+4 r 4 \\
& x-3) 4 x^{\wedge} 2-3 x+2 \\
& 4 x^{\wedge} 2-2 x \\
& \text {---------- } \\
& 4 x+2 \\
& 4 x-2 \\
& \text {------- } \\
& 4
\end{aligned}
$$

$4 x^{2}-3 x+2 \equiv(x-3)(4 x+4)+4(\bmod 5)$
In general, divide $P(x)$ by $(x-a)$ gives $Q(x)$ and remainder r.

Polynomial Division.

Divide $4 x^{2}-3 x+2$ by $(x-3)$ modulo 5 .

$$
\begin{aligned}
& 4 x+4 r 4 \\
& x-3) 4 x^{\wedge} 2-3 x+2 \\
& 4 x^{\wedge} 2-2 x \\
& 4 x+2 \\
& 4 \mathrm{x}-2 \\
& \text {------- }
\end{aligned}
$$

$4 x^{2}-3 x+2 \equiv(x-3)(4 x+4)+4(\bmod 5)$
In general, divide $P(x)$ by $(x-a)$ gives $Q(x)$ and remainder r.
That is, $P(x)=(x-a) Q(x)+r$

Only d roots.

Lemma 1: $P(x)$ has root a iff $P(x) /(x-a)$ has remainder 0 : $P(x)=(x-a) Q(x)$.

Only d roots.

Lemma 1: $P(x)$ has root a iff $P(x) /(x-a)$ has remainder 0 : $P(x)=(x-a) Q(x)$.
Proof: $P(x)=(x-a) Q(x)+r$.
Plugin a: $P(a)=r$.

Only d roots.

Lemma 1: $P(x)$ has root a iff $P(x) /(x-a)$ has remainder 0 : $P(x)=(x-a) Q(x)$.
Proof: $P(x)=(x-a) Q(x)+r$.
Plugin a: $P(a)=r$.
It is a root if and only if $r=0$.

Only d roots.

Lemma 1: $P(x)$ has root a iff $P(x) /(x-a)$ has remainder 0 : $P(x)=(x-a) Q(x)$.
Proof: $P(x)=(x-a) Q(x)+r$.
Plugin a: $P(a)=r$.
It is a root if and only if $r=0$.

Only d roots.

Lemma 1: $P(x)$ has root a iff $P(x) /(x-a)$ has remainder 0 : $P(x)=(x-a) Q(x)$.
Proof: $P(x)=(x-a) Q(x)+r$.
Plugin a: $P(a)=r$.
It is a root if and only if $r=0$.
Lemma 2: $P(x)$ has d roots; r_{1}, \ldots, r_{d} then $P(x)=c\left(x-r_{1}\right)\left(x-r_{2}\right) \cdots\left(x-r_{d}\right)$.

Only d roots.

Lemma 1: $P(x)$ has root a iff $P(x) /(x-a)$ has remainder 0 : $P(x)=(x-a) Q(x)$.
Proof: $P(x)=(x-a) Q(x)+r$.
Plugin a: $P(a)=r$.
It is a root if and only if $r=0$.
Lemma 2: $P(x)$ has d roots; r_{1}, \ldots, r_{d} then
$P(x)=c\left(x-r_{1}\right)\left(x-r_{2}\right) \cdots\left(x-r_{d}\right)$.
Proof Sketch: By induction.

Only d roots.

Lemma 1: $P(x)$ has root a iff $P(x) /(x-a)$ has remainder 0 : $P(x)=(x-a) Q(x)$.
Proof: $P(x)=(x-a) Q(x)+r$.
Plugin a: $P(a)=r$.
It is a root if and only if $r=0$.
Lemma 2: $P(x)$ has d roots; r_{1}, \ldots, r_{d} then
$P(x)=c\left(x-r_{1}\right)\left(x-r_{2}\right) \cdots\left(x-r_{d}\right)$.
Proof Sketch: By induction.
Induction Step: $P(x)=\left(x-r_{1}\right) Q(x)$ by Lemma 1. $Q(x)$ has smaller degree so use the induction hypothesis.

Only d roots.

Lemma 1: $P(x)$ has root a iff $P(x) /(x-a)$ has remainder 0 : $P(x)=(x-a) Q(x)$.
Proof: $P(x)=(x-a) Q(x)+r$.
Plugin a: $P(a)=r$.
It is a root if and only if $r=0$.
Lemma 2: $P(x)$ has d roots; r_{1}, \ldots, r_{d} then
$P(x)=c\left(x-r_{1}\right)\left(x-r_{2}\right) \cdots\left(x-r_{d}\right)$.
Proof Sketch: By induction.
Induction Step: $P(x)=\left(x-r_{1}\right) Q(x)$ by Lemma 1. $Q(x)$ has smaller degree so use the induction hypothesis.

Only d roots.

Lemma 1: $P(x)$ has root a iff $P(x) /(x-a)$ has remainder 0 :
$P(x)=(x-a) Q(x)$.
Proof: $P(x)=(x-a) Q(x)+r$.
Plugin a: $P(a)=r$.
It is a root if and only if $r=0$.
Lemma 2: $P(x)$ has d roots; r_{1}, \ldots, r_{d} then
$P(x)=c\left(x-r_{1}\right)\left(x-r_{2}\right) \cdots\left(x-r_{d}\right)$.
Proof Sketch: By induction.
Induction Step: $P(x)=\left(x-r_{1}\right) Q(x)$ by Lemma 1. $Q(x)$ has smaller degree so use the induction hypothesis.
$d+1$ roots implies degree is at least $d+1$.

Only d roots.

Lemma 1: $P(x)$ has root a iff $P(x) /(x-a)$ has remainder 0 :
$P(x)=(x-a) Q(x)$.
Proof: $P(x)=(x-a) Q(x)+r$.
Plugin a: $P(a)=r$.
It is a root if and only if $r=0$.
Lemma 2: $P(x)$ has d roots; r_{1}, \ldots, r_{d} then
$P(x)=c\left(x-r_{1}\right)\left(x-r_{2}\right) \cdots\left(x-r_{d}\right)$.
Proof Sketch: By induction.
Induction Step: $P(x)=\left(x-r_{1}\right) Q(x)$ by Lemma 1. $Q(x)$ has smaller degree so use the induction hypothesis.
$d+1$ roots implies degree is at least $d+1$.
Roots fact: Any degree d polynomial has at most d roots.

Finite Fields

Proof works for reals, rationals, and complex numbers.

Finite Fields

Proof works for reals, rationals, and complex numbers.
..but not for integers, since no multiplicative inverses.

Finite Fields

Proof works for reals, rationals, and complex numbers.
..but not for integers, since no multiplicative inverses.
Arithmetic modulo a prime p has multiplicative inverses..

Finite Fields

Proof works for reals, rationals, and complex numbers. ..but not for integers, since no multiplicative inverses.
Arithmetic modulo a prime p has multiplicative inverses..
..and has only a finite number of elements.

Finite Fields

Proof works for reals, rationals, and complex numbers.
..but not for integers, since no multiplicative inverses.
Arithmetic modulo a prime p has multiplicative inverses..
..and has only a finite number of elements.
Good for computer science.

Finite Fields

Proof works for reals, rationals, and complex numbers.
..but not for integers, since no multiplicative inverses.
Arithmetic modulo a prime p has multiplicative inverses..
..and has only a finite number of elements.
Good for computer science.
Arithmetic modulo a prime m is a finite field denoted by F_{m} or $G F(m)$.

Finite Fields

Proof works for reals, rationals, and complex numbers.
..but not for integers, since no multiplicative inverses.
Arithmetic modulo a prime p has multiplicative inverses..
..and has only a finite number of elements.
Good for computer science.
Arithmetic modulo a prime m is a finite field denoted by F_{m} or $G F(m)$.
Intuitively, a field is a set with operations corresponding to addition, multiplication, and division.

Secret Sharing

Modular Arithmetic Fact: Exactly one polynomial degree $\leq d$ over $G F(p), P(x)$, that hits $d+1$ points.

Secret Sharing

Modular Arithmetic Fact: Exactly one polynomial degree $\leq d$ over $G F(p), P(x)$, that hits $d+1$ points.
Shamir's k out of n Scheme:

Secret Sharing

Modular Arithmetic Fact: Exactly one polynomial degree $\leq d$ over $G F(p), P(x)$, that hits $d+1$ points.
Shamir's k out of n Scheme:
Secret $s \in\{0, \ldots, p-1\}$

Secret Sharing

Modular Arithmetic Fact: Exactly one polynomial degree $\leq d$ over $G F(p), P(x)$, that hits $d+1$ points.
Shamir's k out of n Scheme:
Secret $s \in\{0, \ldots, p-1\}$

1. Choose $a_{0}=s$, and randomly a_{1}, \ldots, a_{k-1}.

Secret Sharing

Modular Arithmetic Fact: Exactly one polynomial degree $\leq d$ over $G F(p), P(x)$, that hits $d+1$ points.
Shamir's k out of n Scheme:
Secret $s \in\{0, \ldots, p-1\}$

1. Choose $a_{0}=s$, and randomly a_{1}, \ldots, a_{k-1}.
2. Let $P(x)=a_{k-1} x^{k-1}+a_{k-2} x^{k-2}+\cdots a_{0}$ with $a_{0}=s$.

Secret Sharing

Modular Arithmetic Fact: Exactly one polynomial degree $\leq d$ over $G F(p), P(x)$, that hits $d+1$ points.
Shamir's k out of n Scheme:
Secret $s \in\{0, \ldots, p-1\}$

1. Choose $a_{0}=s$, and randomly a_{1}, \ldots, a_{k-1}.
2. Let $P(x)=a_{k-1} x^{k-1}+a_{k-2} x^{k-2}+\cdots a_{0}$ with $a_{0}=s$.
3. Share i is point $(i, P(i) \bmod p)$.

Secret Sharing

Modular Arithmetic Fact: Exactly one polynomial degree $\leq d$ over $G F(p), P(x)$, that hits $d+1$ points.
Shamir's k out of n Scheme:
Secret $s \in\{0, \ldots, p-1\}$

1. Choose $a_{0}=s$, and randomly a_{1}, \ldots, a_{k-1}.
2. Let $P(x)=a_{k-1} x^{k-1}+a_{k-2} x^{k-2}+\cdots a_{0}$ with $a_{0}=s$.
3. Share i is point $(i, P(i) \bmod p)$.

Secret Sharing

Modular Arithmetic Fact: Exactly one polynomial degree $\leq d$ over $G F(p), P(x)$, that hits $d+1$ points.

Shamir's k out of n Scheme:
Secret $s \in\{0, \ldots, p-1\}$

1. Choose $a_{0}=s$, and randomly a_{1}, \ldots, a_{k-1}.
2. Let $P(x)=a_{k-1} x^{k-1}+a_{k-2} x^{k-2}+\cdots a_{0}$ with $a_{0}=s$.
3. Share i is point $(i, P(i) \bmod p)$.

Roubustness: Any k knows secret.

Secret Sharing

Modular Arithmetic Fact: Exactly one polynomial degree $\leq d$ over $G F(p), P(x)$, that hits $d+1$ points.

Shamir's k out of n Scheme:
Secret $s \in\{0, \ldots, p-1\}$

1. Choose $a_{0}=s$, and randomly a_{1}, \ldots, a_{k-1}.
2. Let $P(x)=a_{k-1} x^{k-1}+a_{k-2} x^{k-2}+\cdots a_{0}$ with $a_{0}=s$.
3. Share i is point $(i, P(i) \bmod p)$.

Roubustness: Any k knows secret.
Knowing k pts, only one $P(x)$, evaluate $P(0)$.
Secrecy: Any $k-1$ knows nothing.

Secret Sharing

Modular Arithmetic Fact: Exactly one polynomial degree $\leq d$ over $G F(p), P(x)$, that hits $d+1$ points.
Shamir's k out of n Scheme:
Secret $s \in\{0, \ldots, p-1\}$

1. Choose $a_{0}=s$, and randomly a_{1}, \ldots, a_{k-1}.
2. Let $P(x)=a_{k-1} x^{k-1}+a_{k-2} x^{k-2}+\cdots a_{0}$ with $a_{0}=s$.
3. Share i is point $(i, P(i) \bmod p)$.

Roubustness: Any k knows secret.
Knowing k pts, only one $P(x)$, evaluate $P(0)$.
Secrecy: Any $k-1$ knows nothing.
Knowing $\leq k-1$ pts, any $P(0)$ is possible.

Secret Sharing

Modular Arithmetic Fact: Exactly one polynomial degree $\leq d$ over $G F(p), P(x)$, that hits $d+1$ points.
Shamir's k out of n Scheme:
Secret $s \in\{0, \ldots, p-1\}$

1. Choose $a_{0}=s$, and randomly a_{1}, \ldots, a_{k-1}.
2. Let $P(x)=a_{k-1} x^{k-1}+a_{k-2} x^{k-2}+\cdots a_{0}$ with $a_{0}=s$.
3. Share i is point $(i, P(i) \bmod p)$.

Roubustness: Any k knows secret.
Knowing k pts, only one $P(x)$, evaluate $P(0)$.
Secrecy: Any $k-1$ knows nothing.
Knowing $\leq k-1$ pts, any $P(0)$ is possible.

Minimality.

Need $p>n$ to hand out n shares: $P(1) \ldots P(n)$.

Minimality.

Need $p>n$ to hand out n shares: $P(1) \ldots P(n)$.
For b-bit secret, must choose a prime $p>2^{b}$.

Minimality.

Need $p>n$ to hand out n shares: $P(1) \ldots P(n)$.
For b-bit secret, must choose a prime $p>2^{b}$.
Theorem: There is always a prime between n and $2 n$.
Chebyshev said it,

Minimality.

Need $p>n$ to hand out n shares: $P(1) \ldots P(n)$.
For b-bit secret, must choose a prime $p>2^{b}$.
Theorem: There is always a prime between n and $2 n$.
Chebyshev said it, And I say it again,

Minimality.

Need $p>n$ to hand out n shares: $P(1) \ldots P(n)$.
For b-bit secret, must choose a prime $p>2^{b}$.
Theorem: There is always a prime between n and $2 n$.
Chebyshev said it,
And I say it again,
There is always a prime

Minimality.

Need $p>n$ to hand out n shares: $P(1) \ldots P(n)$.
For b-bit secret, must choose a prime $p>2^{b}$.
Theorem: There is always a prime between n and $2 n$.
Chebyshev said it, And I say it again,
There is always a prime
Between n and $2 n$.

Minimality.

Need $p>n$ to hand out n shares: $P(1) \ldots P(n)$.
For b-bit secret, must choose a prime $p>2^{b}$.
Theorem: There is always a prime between n and $2 n$.
Chebyshev said it,
And I say it again,
There is always a prime
Between n and $2 n$.
Working over numbers within 1 bit of secret size. Minimality.

Minimality.

Need $p>n$ to hand out n shares: $P(1) \ldots P(n)$.
For b-bit secret, must choose a prime $p>2^{b}$.
Theorem: There is always a prime between n and $2 n$.
Chebyshev said it,
And I say it again,
There is always a prime
Between n and $2 n$.
Working over numbers within 1 bit of secret size. Minimality.
With k shares, reconstruct polynomial, $P(x)$.

Minimality.

Need $p>n$ to hand out n shares: $P(1) \ldots P(n)$.
For b-bit secret, must choose a prime $p>2^{b}$.
Theorem: There is always a prime between n and $2 n$.
Chebyshev said it,
And I say it again,
There is always a prime
Between n and $2 n$.
Working over numbers within 1 bit of secret size. Minimality.
With k shares, reconstruct polynomial, $P(x)$.
With $k-1$ shares, any of p values possible for $P(0)$!

Minimality.

Need $p>n$ to hand out n shares: $P(1) \ldots P(n)$.
For b-bit secret, must choose a prime $p>2^{b}$.
Theorem: There is always a prime between n and $2 n$.
Chebyshev said it,
And I say it again,
There is always a prime
Between n and $2 n$.
Working over numbers within 1 bit of secret size. Minimality.
With k shares, reconstruct polynomial, $P(x)$.
With k - 1 shares, any of p values possible for $P(0)$!
(Almost) any b-bit string possible!

Minimality.

Need $p>n$ to hand out n shares: $P(1) \ldots P(n)$.
For b-bit secret, must choose a prime $p>2^{b}$.
Theorem: There is always a prime between n and $2 n$.
Chebyshev said it,
And I say it again,
There is always a prime
Between n and $2 n$.
Working over numbers within 1 bit of secret size. Minimality.
With k shares, reconstruct polynomial, $P(x)$.
With k - 1 shares, any of p values possible for $P(0)$!
(Almost) any b-bit string possible!
(Almost) the same as what is missing: one $P(i)$.

Runtime.

Runtime.

Runtime: polynomial in k, n, and $\log p$.

1. Evaluate degree $k-1$ polynomial n times using $\log p$-bit numbers.
2. Reconstruct secret by solving system of k equations using $\log p$-bit arithmetic.

A bit more counting.

What is the number of degree d polynomials over $G F(m)$?

A bit more counting.

What is the number of degree d polynomials over $G F(m)$?

- $m^{d+1}: d+1$ coefficients from $\{0, \ldots, m-1\}$.

A bit more counting.

What is the number of degree d polynomials over $G F(m)$?

- $m^{d+1}: d+1$ coefficients from $\{0, \ldots, m-1\}$.
- $m^{d+1}: d+1$ points with y-values from $\{0, \ldots, m-1\}$

A bit more counting.

What is the number of degree d polynomials over $G F(m)$?

- $m^{d+1}: d+1$ coefficients from $\{0, \ldots, m-1\}$.
- $m^{d+1}: d+1$ points with y-values from $\{0, \ldots, m-1\}$

Infinite number for reals, rationals, complex numbers!

Summary

Two points make a line.

Summary

Two points make a line.
Compute solution: m, b.

Summary

Two points make a line.
Compute solution: m, b. Unique:

Summary

Two points make a line.
Compute solution: m, b.
Unique:
Assume two solutions, show they are the same.

Summary

Two points make a line.
Compute solution: m, b.
Unique:
Assume two solutions, show they are the same.
Today: $d+1$ points make a unique degree d polynomial.

Summary

Two points make a line.
Compute solution: m, b.
Unique:
Assume two solutions, show they are the same.
Today: $d+1$ points make a unique degree d polynomial.
Cuz:
Can solvelinear system.
Solution exists: lagrange interpolation.
Unique:
Roots fact: Factoring sez $(x-r)$ is root.

Summary

Two points make a line.
Compute solution: m, b.
Unique:
Assume two solutions, show they are the same.
Today: $d+1$ points make a unique degree d polynomial.
Cuz:
Can solvelinear system.
Solution exists: lagrange interpolation.
Unique:
Roots fact: Factoring sez $(x-r)$ is root. Induction, says only d roots.

Summary

Two points make a line.
Compute solution: m, b.
Unique:
Assume two solutions, show they are the same.
Today: $d+1$ points make a unique degree d polynomial.
Cuz:
Can solvelinear system.
Solution exists: lagrange interpolation.
Unique:
Roots fact: Factoring sez $(x-r)$ is root. Induction, says only d roots.
Apply: $P(x), Q(x)$ degree d.

Summary

Two points make a line.
Compute solution: m, b.
Unique:
Assume two solutions, show they are the same.
Today: $d+1$ points make a unique degree d polynomial.
Cuz:
Can solvelinear system.
Solution exists: lagrange interpolation.
Unique:
Roots fact: Factoring sez $(x-r)$ is root. Induction, says only d roots.
Apply: $P(x), Q(x)$ degree d. $P(x)-Q(x)$ is degree $d \Longrightarrow d$ roots.

Summary

Two points make a line.
Compute solution: m, b.
Unique:
Assume two solutions, show they are the same.
Today: $d+1$ points make a unique degree d polynomial.
Cuz:
Can solvelinear system.
Solution exists: lagrange interpolation.
Unique:
Roots fact: Factoring sez $(x-r)$ is root. Induction, says only d roots.
Apply: $P(x), Q(x)$ degree d.

$$
\begin{aligned}
& P(x)-Q(x) \text { is degree } d \Longrightarrow d \text { roots. } \\
& P(x)=Q(x) \text { on } d+1 \text { points } \Longrightarrow P(x)=Q(x) .
\end{aligned}
$$

Summary

Two points make a line.
Compute solution: m, b.
Unique:
Assume two solutions, show they are the same.
Today: $d+1$ points make a unique degree d polynomial.
Cuz:
Can solvelinear system.
Solution exists: lagrange interpolation.
Unique:
Roots fact: Factoring sez $(x-r)$ is root. Induction, says only d roots.
Apply: $P(x), Q(x)$ degree d.

$$
\begin{aligned}
& P(x)-Q(x) \text { is degree } d \Longrightarrow d \text { roots. } \\
& P(x)=Q(x) \text { on } d+1 \text { points } \Longrightarrow P(x)=Q(x) .
\end{aligned}
$$

Secret Sharing:
k points on degree $k-1$ polynomial is great!
Can hand out n points on polynomial as shares.

[^0]: ${ }^{1}$ Typically small, say $e=3$.

[^1]: ${ }^{1}$ Typically small, say $e=3$.

[^2]: ${ }^{1}$ Typically small, say $e=3$.

[^3]: ${ }^{1}$ Typically small, say $e=3$.

[^4]: ${ }^{1}$ Typically small, say $e=3$.

[^5]: ${ }^{3}$ Points with different x values.

[^6]: ${ }^{3}$ Points with different x values.

[^7]: ${ }^{3}$ Points with different x values.

[^8]: ${ }^{3}$ Points with different x values.

[^9]: ${ }^{4}$ Points with different x values.

