Review.

25 Theory: If you drink alcohol you must be at least 18.

Which cards do you turn over? Drink Alcohol \implies " ≥ 18 " "< 18" => Don't Drink Alcohol. Contrapositive. (A) (B) (C) and/or (D)? Propositional Forms: $\land,\lor, \neg, P \implies Q \equiv \neg P \lor Q$. Truth Table. Putting together identities. (E.g., cases, substitution.) Predicates, P(x), and quantifiers. $\forall x, P(x)$. DeMorgan's: $\neg (P \lor Q) \equiv \neg P \land \neg Q$. $\neg \forall x, P(x) \equiv \exists x, \neg P(x)$.

Quick Background and Notation.

Integers closed under addition. $a.b \in Z \implies a+b \in Z$ ab means "a divides b". 2|4? Yes! Since for q = 2, 4 = (2)2. 7|23? No! No q where true. 4|2? No! 2|-4? Yes! Since for q = 2, -4 = (-2)2. Formally: for $a, b \in \mathbb{Z}$, $a | b \iff \exists q \in \mathbb{Z}$ where b = aq. 3|15 since for q = 5, 15 = 3(5). A natural number p > 1, is **prime** if it is divisible only by 1 and itself. A number x is even if and only if 2|x, or x = 2k for $x, k \in \mathbb{Z}$. A number x is odd if and only if x = 2k + 1

CS70: Lecture 2. Outline.

Today: Proofs!!! 1. By Example. 2. Direct. (Prove $P \implies Q$.) 3. by Contraposition (Prove $P \implies Q$) 4. by Contradiction (Prove P.) 5. by Cases If time: discuss induction.

Divides.

ab means (A) There exists $k \in \mathbb{Z}$, with a = kb. (B) There exists $k \in \mathbb{Z}$, with b = ka. (C) There exists $k \in \mathbb{N}$, with b = ka. (D) There exists $k \in \mathbb{Z}$, with k = ab. (E) a divides b Incorrect: (C) sufficient not necessary. (A) Wrong way. (D) the product is an integer. Correct: (B) and (E).

Last time: Existential statement.

How to prove existential statement? Give an example. (Sometimes called "proof by example.") **Theorem:** $(\exists x \in N)(x = x^2)$ **Pf:** $0 = 0^2 = 0$

П

П

Often used to disprove claim. Homework.

Direct Proof.

Theorem: For any $a, b, c \in Z$, if $a \mid b$ and $a \mid c$ then $a \mid (b - c)$. **Proof:** Assume *a*|*b* and *a*|*c* b = aq and c = aq' where $q, q' \in Z$ b-c = aq - aq' = a(q-q') Done? (b-c) = a(q-q') and (q-q') is an integer so by definition of divides a(b-c)Works for ∀a, b, c?

Argument applies to every $a, b, c \in Z$. Used distributive property and definition of divides.

Direct Proof Form: Goal: $P \implies Q$

Assume P.

Therefore Q.

Another direct proof.	The Converse
Let D_3 be the 3 digit natural numbers. Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, then 11 n .	
$\forall n \in D_3, (11 \text{alt. sum of digits of } n) \implies 11 n$ Examples: n = 121 Alt Sum: $1-2+1=0$. Divis. by 11. As is 121. n = 605 Alt Sum: $6-0+5=11$ Divis. by 11. As is $605=11(55)$	Thm: $\forall n \in D_3$, (Is converse a th $\forall n \in D_3$, (11 <i>n</i>)
Proof: For $n \in D_3$, $n = 100a + 10b + c$, for some a, b, c . Assume: Alt. sum: $a - b + c = 11k$ for some integer k . Add $99a + 11b$ to both sides. 100a + 10b + c = 11k + 99a + 11b = 11(k + 9a + b)	Yes? No?
Left hand side is $n, k+9a+b$ is integer. $\implies 11 n.$ Direct proof of $P \implies Q$: Assumed $P: 11 a-b+c$. Proved $Q: 11 n.$	
Proof by Contraposition	Another Contr
Thm: For $n \in Z^+$ and $d n$. If n is odd then d is odd. n = kd and $n = 2k' + 1$ for integers k, k' . what do we know about d ? Goal: Prove $P \implies Q$. Assume $\neg Q$ and prove $\neg P$. Conclusion: $\neg Q \implies \neg P$ equivalent to $P \implies Q$. Proof: Assume $\neg Q$.	Lemma: For ev n^2 is even, $n^2 =$ Proof by contra $P = 'n^2$ is even. Q = 'n is even' Prove $\neg Q \implies n$ n = 2k + 1
Proof: Assume $\neg Q$: <i>d</i> is even. $d = 2k$. d n so we have	$n^2 = 4k^2 + 4k + n^2 = 2l + 1$ whe

n = qd = q(2k) = 2(kq)*n* is even. $\neg P$

e

,(11|alt. sum of digits of n) \implies 11|ntheorem? \implies (11|alt. sum of digits of *n*)

traposition...

every *n* in *N*, n^2 is even $\implies n$ is even. ($P \implies Q$) $=2k, \ldots \sqrt{2k}$ even? traposition: $(P \implies Q) \equiv (\neg Q \implies \neg P)$ en.' $\neg P = n^2$ is odd' $\neg Q =$ 'n is odd' $\neg P$: *n* is odd $\implies n^2$ is odd. $k+1 = 2(2k^2 + 2k) + 1.$ nere / is a natural number.. ... and n^2 is odd! $\neg Q \Longrightarrow \neg P$ so $P \Longrightarrow Q$ and ...

Another Direct Proof.

```
Theorem: \forall n \in D_3, (11|n) \implies (11|\text{alt. sum of digits of } n)
Proof: Assume 11 n.
 n = 100a + 10b + c = 11k \implies
   99a+11b+(a-b+c)=11k \implies
         a-b+c=11k-99a-11b \Longrightarrow
             a-b+c=11(k-9a-b) \Longrightarrow
                 a-b+c=11\ell where \ell=(k-9a-b)\in Z
That is 11 alternating sum of digits.
Note: similar proof to other. In this case every \implies is \iff
Often works with arithmetic properties ...
```

...not when multiplying by 0. We have. Theorem: $\forall n \in N', (11 | alt. sum of digits of n) \iff (11 | n)$

Proof by contradiction:form

Theorem: $\sqrt{2}$ is irrational. Must show: For every $a, b \in Z$, $(\frac{a}{b})^2 \neq 2$. A simple property (equality) should always "not" hold. Proof by contradiction: Theorem: P. $\neg P \Longrightarrow P_1 \cdots \Longrightarrow R$ $\neg P \Longrightarrow Q_1 \cdots \Longrightarrow \neg R$ $\neg P \implies R \land \neg R \equiv False$ or $\neg P \implies False$ Contrapositive of $\neg P \implies False$ is True $\implies P$. Theorem *P* is true. And proven.

Contradiction

Theorem: $\sqrt{2}$ is irrational. Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$. Reduced form: *a* and *b* have no common factors.

 $\sqrt{2}b = a$

 $2b^2 = a^2 = 4k^2$

 a^2 is even $\implies a$ is even.

a = 2k for some integer k

$b^2 = 2k^2$

 b^2 is even $\implies b$ is even. *a* and *b* have a common factor. Contradiction.

Poll: Odds and evens. x is even, y is odd.

Even numbers are divisible by 2.

Which are even?

(A) x³ (B) y³

(C) x + 5x(D) xy

(E) xy^5

(F) x + y

A, D, E all contain a factor of 2.

x = 2k, and $x^3 = 8k = 2(4k)$ and is even.

y³. Odd?

y = (2k+1). $y^3 = 8k^3 + 24k^2 + 24k + 1 = 2(4k^3 + 12k^2 + 12k) + 1$.

Odd times an odd? Odd.

Any power of an odd number? Odd. Idea: $(2k+1)^n$ has terms (a) with the last term being 1

Proof by contradiction: example

Theorem: There are infinitely many primes.

Proof:

- Assume finitely many primes: p₁,...,p_k.
- Consider number

 $q = (p_1 \times p_2 \times \cdots p_k) + 1.$

- q cannot be one of the primes as it is larger than any p_i .
- ▶ q has prime divisor p ("p > 1" = R) which is one of p_i .
- ▶ *p* divides both $x = p_1 \cdot p_2 \cdots p_k$ and *q*, and divides q x,
- $\blacktriangleright \implies p|(q-x) \implies p \le (q-x) = 1.$
- ▶ so $p \le 1$. (Contradicts *R*.)

The original assumption that "the theorem is false" is false, thus the theorem is proven.

Proof by cases.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals. **Proof:** First a lemma...

Lemma: If *x* is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both *a* and *b* are even.

Reduced form $\frac{a}{b}$: *a* and *b* can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b⁵,

 $a^5 - ab^4 + b^5 = 0$

Case 1: *a* odd, *b* odd: odd - odd +odd = even. Not possible. Case 2: *a* even, *b* odd: even - even +odd = even. Not possible. Case 3: *a* odd, *b* even: odd - even +even = even. Not possible. Case 4: *a* even, *b* even: even - even +even = even. Possible. The fourth case is the only one possible, so the lemma follows.

Product of first k primes..

Did we prove?

- "The product of the first k primes plus 1 is prime."
- No.
- > The chain of reasoning started with a false statement.

Consider example..

- $\blacktriangleright 2 \times 3 \times 5 \times 7 \times 11 \times 13 + 1 = 30031 = 59 \times 509$
- There is a prime *in between* 13 and q = 30031 that divides q.
- Proof assumed no primes in between p_k and q.

Proof by cases.

Theorem: There exist irrational *x* and *y* such that x^y is rational. Let $x = y = \sqrt{2}$. Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done! Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational. New values: $x = \sqrt{2}^{\sqrt{2}}$, $y = \sqrt{2}$. $x^y = (\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}} = \sqrt{2}^2 = 2$. Thus, we have irrational *x* and *y* with a rational x^y (i.e., 2). One of the cases is true so theorem holds. Question: Which case holds? Don't know!!!

П

Poll: proof review.

Which of the following are (certainly) true? (A) $\sqrt{2}$ is irrational. (B) $\sqrt{2}^{\sqrt{2}}$ is rational. (C) $\sqrt{2}^{\sqrt{2}}$ is rational or it isn't. (D) $(2^{\sqrt{2}})^{\sqrt{2}}$ is rational. (A),(C),(D) (B) I don't know.

Summary: Note 2.

Direct Proof: To Prove: $P \implies Q$. Assume P. Prove Q. a|b and $a|c \implies a|(b-c)$. By Contraposition: To Prove: $P \implies Q$ Assume $\neg Q$. Prove $\neg P$. n^2 is odd $\implies n$ is odd. $\equiv n$ is even $\implies n^2$ is even. By Contradiction: To Prove: *P* Assume $\neg P$. Prove False. $\sqrt{2}$ is rational. $\sqrt{2} = \frac{a}{b}$ with no common factors.... By Cases: informal. Universal: show that statement holds in all cases. Existence: used cases where one is true. Either $\sqrt{2}$ and $\sqrt{2}$ worked. or $\sqrt{2}$ and $\sqrt{2}^{\sqrt{2}}$ worked. Careful when proving! Don't assume the theorem. Divide by zero.Watch converse. ...

Be careful.

Theorem: $3 = 4$
Proof: Assume $3 = 4$.
Start with $12 = 12$.
Divide one side by 3 and the other by 4 to get $4 = 3$.
By commutativity theorem holds.
Don't assume what you want to prove!

CS70: Note 3. Induction!

Poll. What's the biggest number?
(A) 100
(B) 101
(C) n+1
(D) infinity.
(E) This is about the "recursive leap of faith."

Be really careful! Theorem: 1 = 2 Proof: For x = y, we have $(x^2 - xy) = x^2 - y^2$ x(x - y) = (x + y)(x - y) x = (x + y) x = 2x1 = 2 Poll: What is the problem? (A) Assumed what you were proving. (B) No problem. Its fine.

(C) x - y is zero.

(D) Can't multiply by zero in a proof.

Dividing by zero is no good. Multiplying by zero is wierdly cool! Also: Multiplying inequalities by a negative.

 $P \Longrightarrow Q$ does not mean $Q \Longrightarrow P$.