Review.

Theory: If you drink alcohol you must be at least 18 .

Review.

Theory: If you drink alcohol you must be at least 18 .
Which cards do you turn over?

Review.

Theory: If you drink alcohol you must be at least 18.
Which cards do you turn over?
Drink Alcohol $\Longrightarrow " \geq 18 "$

Review.

Theory: If you drink alcohol you must be at least 18.
Which cards do you turn over?
Drink Alcohol $\Longrightarrow " \geq 18 "$
" <18 " \Longrightarrow Don’t Drink Alcohol.

Review.

Theory: If you drink alcohol you must be at least 18.
Which cards do you turn over?
Drink Alcohol $\Longrightarrow " \geq 18 "$
" <18 " \Longrightarrow Don’t Drink Alcohol. Contrapositive.

Review.

Theory: If you drink alcohol you must be at least 18 .
Which cards do you turn over?
Drink Alcohol $\Longrightarrow " \geq 18 "$
" <18 " \Longrightarrow Don’t Drink Alcohol. Contrapositive.
(A) (B) (C) and/or (D)?

Review.

Theory: If you drink alcohol you must be at least 18.
Which cards do you turn over?
Drink Alcohol $\Longrightarrow " \geq 18 "$
" <18 " \Longrightarrow Don’t Drink Alcohol. Contrapositive.
(A) (B) (C) and/or (D)?

Propositional Forms:

Review.

Theory: If you drink alcohol you must be at least 18 .
Which cards do you turn over?
Drink Alcohol $\Longrightarrow " \geq 18 "$
" <18 " \Longrightarrow Don’t Drink Alcohol. Contrapositive.
(A) (B) (C) and/or (D)?

Propositional Forms: $\wedge, \vee, \neg, P \Longrightarrow Q \equiv \neg P \vee Q$.

Review.

Theory: If you drink alcohol you must be at least 18.
Which cards do you turn over?
Drink Alcohol $\Longrightarrow " \geq 18 "$
" <18 " \Longrightarrow Don’t Drink Alcohol. Contrapositive.
(A) (B) (C) and/or (D)?

Propositional Forms: $\wedge, \vee, \neg, P \Longrightarrow Q \equiv \neg P \vee Q$.
Truth Table. Putting together identities. (E.g., cases, substitution.)

Review.

Theory: If you drink alcohol you must be at least 18 .
Which cards do you turn over?
Drink Alcohol $\Longrightarrow " \geq 18$ "
" <18 " \Longrightarrow Don't Drink Alcohol. Contrapositive.
(A) (B) (C) and/or (D)?

Propositional Forms: $\wedge, \vee, \neg, P \Longrightarrow Q \equiv \neg P \vee Q$.
Truth Table. Putting together identities. (E.g., cases, substitution.)
Predicates, $P(x)$, and quantifiers. $\forall x, P(x)$.

Review.

Theory: If you drink alcohol you must be at least 18 .
Which cards do you turn over?
Drink Alcohol $\Longrightarrow " \geq 18 "$
" <18 " \Longrightarrow Don't Drink Alcohol. Contrapositive.
(A) (B) (C) and/or (D)?

Propositional Forms: $\wedge, \vee, \neg, P \Longrightarrow Q \equiv \neg P \vee Q$.
Truth Table. Putting together identities. (E.g., cases, substitution.)
Predicates, $P(x)$, and quantifiers. $\forall x, P(x)$.
DeMorgan's: $\quad \neg(P \vee Q) \equiv \neg P \wedge \neg Q$.

Review.

Theory: If you drink alcohol you must be at least 18 .
Which cards do you turn over?
Drink Alcohol $\Longrightarrow " \geq 18 "$
" <18 " \Longrightarrow Don't Drink Alcohol. Contrapositive.
(A) (B) (C) and/or (D)?

Propositional Forms: $\wedge, \vee, \neg, P \Longrightarrow Q \equiv \neg P \vee Q$.
Truth Table. Putting together identities. (E.g., cases, substitution.)
Predicates, $P(x)$, and quantifiers. $\forall x, P(x)$.
DeMorgan's: $\quad \neg(P \vee Q) \equiv \neg P \wedge \neg Q . \quad \neg \forall x, P(x) \equiv \exists x, \neg P(x)$.

CS70: Lecture 2. Outline.

Today: Proofs!!!

1. By Example.
2. Direct. (Prove $P \Longrightarrow Q$.)
3. by Contraposition (Prove $P \Longrightarrow Q$)
4. by Contradiction (Prove P.)
5. by Cases

If time: discuss induction.

Last time: Existential statement.

How to prove existential statement?

Last time: Existential statement.

How to prove existential statement?
Give an example. (Sometimes called "proof by example.")

Last time: Existential statement.

How to prove existential statement?
Give an example. (Sometimes called "proof by example.")
Theorem: $(\exists x \in N)\left(x=x^{2}\right)$

Last time: Existential statement.

How to prove existential statement?
Give an example. (Sometimes called "proof by example.")
Theorem: $(\exists x \in N)\left(x=x^{2}\right)$
Pf: $0=0^{2}=0$

Last time: Existential statement.

How to prove existential statement?
Give an example. (Sometimes called "proof by example.")
Theorem: $(\exists x \in N)\left(x=x^{2}\right)$
Pf: $0=0^{2}=0$

Often used to disprove claim.

Last time: Existential statement.

How to prove existential statement?
Give an example. (Sometimes called "proof by example.")
Theorem: $(\exists x \in N)\left(x=x^{2}\right)$
Pf: $0=0^{2}=0$

Often used to disprove claim.
Homework.

Quick Background and Notation.

Integers closed under addition.

Quick Background and Notation.

Integers closed under addition.

$$
a, b \in Z \Longrightarrow a+b \in Z
$$

Quick Background and Notation.

Integers closed under addition.
$a, b \in Z \Longrightarrow a+b \in Z$
$a \mid b$ means "a divides b".

Quick Background and Notation.

Integers closed under addition.

$$
a, b \in Z \Longrightarrow a+b \in Z
$$

$a \mid b$ means "a divides b".
2|4?

Quick Background and Notation.

Integers closed under addition.

$$
a, b \in Z \Longrightarrow a+b \in Z
$$

$a \mid b$ means "a divides b".
2|4?

Quick Background and Notation.

Integers closed under addition.
$a, b \in Z \Longrightarrow a+b \in Z$
$a \mid b$ means "a divides b".
2|4?
$7 \mid 23 ?$

Quick Background and Notation.

Integers closed under addition.
$a, b \in Z \Longrightarrow a+b \in Z$
$a \mid b$ means "a divides b".
2|4?
$7 \mid 23 ?$

Quick Background and Notation.

Integers closed under addition.
$a, b \in Z \Longrightarrow a+b \in Z$
$a \mid b$ means "a divides b".
2|4?
$7 \mid 23 ?$
$4 \mid 2$?

Quick Background and Notation.

Integers closed under addition.
$a, b \in Z \Longrightarrow a+b \in Z$
$a \mid b$ means "a divides b".
2|4?
$7 \mid 23 ?$
$4 \mid 2$?

Quick Background and Notation.

Integers closed under addition.

$$
a, b \in Z \Longrightarrow a+b \in Z
$$

$a \mid b$ means "a divides b".
2|4?
$7 \mid 23 ?$
$4 \mid 2$?
$2 \mid-4$?

Quick Background and Notation.

Integers closed under addition.

$$
a, b \in Z \Longrightarrow a+b \in Z
$$

$a \mid b$ means "a divides b".
2|4?
$7 \mid 23 ?$
$4 \mid 2$?
$2 \mid-4$?

Quick Background and Notation.

Integers closed under addition.

$$
a, b \in Z \Longrightarrow a+b \in Z
$$

$a \mid b$ means "a divides b".
2|4?
$7 \mid 23 ?$
$4 \mid 2$?
$2 \mid-4$?

Quick Background and Notation.

Integers closed under addition.

$$
a, b \in Z \Longrightarrow a+b \in Z
$$

$a \mid b$ means "a divides b".
2|4? Yes!
7|23? No!
4|2? No!
2|-4? Yes!
Formally: for $a, b \in \mathbb{Z}, a \mid b \Longleftrightarrow \exists q \in \mathbb{Z}$ where $b=a q$.

Quick Background and Notation.

Integers closed under addition.

$$
a, b \in Z \Longrightarrow a+b \in Z
$$

$a \mid b$ means "a divides b".
2|4? Yes!
7|23? No!
4|2? No!
2|-4? Yes!
Formally: for $a, b \in \mathbb{Z}, a \mid b \Longleftrightarrow \exists q \in \mathbb{Z}$ where $b=a q$. 3|15

Quick Background and Notation.

Integers closed under addition.

$$
a, b \in Z \Longrightarrow a+b \in Z
$$

$a \mid b$ means "a divides b".
2|4? Yes!
7|23? No!
4|2? No!
2|-4? Yes!
Formally: for $a, b \in \mathbb{Z}, a \mid b \Longleftrightarrow \exists q \in \mathbb{Z}$ where $b=a q$.
$3 \mid 15$ since for $q=5$,

Quick Background and Notation.

Integers closed under addition.

$$
a, b \in Z \Longrightarrow a+b \in Z
$$

$a \mid b$ means "a divides b".
2|4? Yes!
7|23? No!
4|2? No!
2|-4? Yes!
Formally: for $a, b \in \mathbb{Z}, a \mid b \Longleftrightarrow \exists q \in \mathbb{Z}$ where $b=a q$.
$3 \mid 15$ since for $q=5,15=3(5)$.

Quick Background and Notation.

Integers closed under addition.

$$
a, b \in Z \Longrightarrow a+b \in Z
$$

$a \mid b$ means "a divides b".
$2 \mid 4$? Yes! Since for $q=2,4=(2) 2$.
7|23? No!
4|2? No!
$2 \mid-4$? Yes! Since for $q=2,-4=(-2) 2$.
Formally: for $a, b \in \mathbb{Z}, a \mid b \Longleftrightarrow \exists q \in \mathbb{Z}$ where $b=a q$.
$3 \mid 15$ since for $q=5,15=3(5)$.

Quick Background and Notation.

Integers closed under addition.

$$
a, b \in Z \Longrightarrow a+b \in Z
$$

$a \mid b$ means "a divides b".
$2 \mid 4$? Yes! Since for $q=2,4=(2) 2$.
$7 \mid 23$? No! No q where true.
$4 \mid 2$? No!
$2 \mid-4$? Yes! Since for $q=2,-4=(-2) 2$.
Formally: for $a, b \in \mathbb{Z}, a \mid b \Longleftrightarrow \exists q \in \mathbb{Z}$ where $b=a q$.
$3 \mid 15$ since for $q=5,15=3(5)$.

Quick Background and Notation.

Integers closed under addition.

$$
a, b \in Z \Longrightarrow a+b \in Z
$$

$a \mid b$ means "a divides b".
$2 \mid 4$? Yes! Since for $q=2,4=(2) 2$.
$7 \mid 23$? No! No q where true.
$4 \mid 2$? No!
$2 \mid-4$? Yes! Since for $q=2,-4=(-2) 2$.
Formally: for $a, b \in \mathbb{Z}, a \mid b \Longleftrightarrow \exists q \in \mathbb{Z}$ where $b=a q$.
$3 \mid 15$ since for $q=5,15=3(5)$.
A natural number $p>1$, is prime if it is divisible only by 1 and itself.

Quick Background and Notation.

Integers closed under addition.

$$
a, b \in Z \Longrightarrow a+b \in Z
$$

$a \mid b$ means "a divides b".
$2 \mid 4$? Yes! Since for $q=2,4=(2) 2$.
$7 \mid 23$? No! No q where true.
4|2? No!
$2 \mid-4$? Yes! Since for $q=2,-4=(-2) 2$.
Formally: for $a, b \in \mathbb{Z}, a \mid b \Longleftrightarrow \exists q \in \mathbb{Z}$ where $b=a q$.
$3 \mid 15$ since for $q=5,15=3(5)$.
A natural number $p>1$, is prime if it is divisible only by 1 and itself.
A number x is even if and only if $2 \mid x$, or $x=2 k$ for $x, k \in \mathbb{Z}$.

Quick Background and Notation.

Integers closed under addition.

$$
a, b \in Z \Longrightarrow a+b \in Z
$$

$a \mid b$ means "a divides b".
$2 \mid 4$? Yes! Since for $q=2,4=(2) 2$.
$7 \mid 23$? No! No q where true.
$4 \mid 2$? No!
2| -4 ? Yes! Since for $q=2,-4=(-2) 2$.
Formally: for $a, b \in \mathbb{Z}, a \mid b \Longleftrightarrow \exists q \in \mathbb{Z}$ where $b=a q$.
$3 \mid 15$ since for $q=5,15=3(5)$.
A natural number $p>1$, is prime if it is divisible only by 1 and itself.
A number x is even if and only if $2 \mid x$, or $x=2 k$ for $x, k \in \mathbb{Z}$.
A number x is odd if and only if $x=2 k+1$

Divides.

$a \mid b$ means
(A) There exists $k \in \mathbb{Z}$, with $a=k b$.
(B) There exists $k \in \mathbb{Z}$, with $b=k a$.
(C) There exists $k \in \mathbb{N}$, with $b=k a$.
(D) There exists $k \in \mathbb{Z}$, with $k=a b$.
(E) a divides b

Divides.

$a \mid b$ means
(A) There exists $k \in \mathbb{Z}$, with $a=k b$.
(B) There exists $k \in \mathbb{Z}$, with $b=k a$.
(C) There exists $k \in \mathbb{N}$, with $b=k a$.
(D) There exists $k \in \mathbb{Z}$, with $k=a b$.
(E) a divides b

Incorrect: (C) sufficient not necessary. (A) Wrong way. (D) the product is an integer.

Divides.

$a \mid b$ means
(A) There exists $k \in \mathbb{Z}$, with $a=k b$.
(B) There exists $k \in \mathbb{Z}$, with $b=k a$.
(C) There exists $k \in \mathbb{N}$, with $b=k a$.
(D) There exists $k \in \mathbb{Z}$, with $k=a b$.
(E) a divides b

Incorrect: (C) sufficient not necessary. (A) Wrong way. (D) the product is an integer.

Correct: (B) and (E).

Direct Proof.

Theorem: For any $a, b, c \in Z$, if $a \mid b$ and $a \mid c$ then $a \mid(b-c)$.

Direct Proof.

Theorem: For any $a, b, c \in Z$, if $a \mid b$ and $a \mid c$ then $a \mid(b-c)$.
Proof: Assume $a \mid b$ and $a \mid c$

Direct Proof.

Theorem: For any $a, b, c \in Z$, if $a \mid b$ and $a \mid c$ then $a \mid(b-c)$.
Proof: Assume $a \mid b$ and $a \mid c$
$b=a q$

Direct Proof.

Theorem: For any $a, b, c \in Z$, if $a \mid b$ and $a \mid c$ then $a \mid(b-c)$.
Proof: Assume $a \mid b$ and $a \mid c$
$b=a q$ and $c=a q^{\prime}$

Direct Proof.

Theorem: For any $a, b, c \in Z$, if $a \mid b$ and $a \mid c$ then $a \mid(b-c)$.
Proof: Assume $a \mid b$ and $a \mid c$
$b=a q$ and $c=a q^{\prime}$ where $q, q^{\prime} \in Z$

Direct Proof.

Theorem: For any $a, b, c \in Z$, if $a \mid b$ and $a \mid c$ then $a \mid(b-c)$.
Proof: Assume $a \mid b$ and $a \mid c$
$b=a q$ and $c=a q^{\prime}$ where $q, q^{\prime} \in Z$
$b-c=a q-a q^{\prime}$

Direct Proof.

Theorem: For any $a, b, c \in Z$, if $a \mid b$ and $a \mid c$ then $a \mid(b-c)$.
Proof: Assume $a \mid b$ and $a \mid c$
$b=a q$ and $c=a q^{\prime}$ where $q, q^{\prime} \in Z$
$b-c=a q-a q^{\prime}=a\left(q-q^{\prime}\right)$

Direct Proof.

Theorem: For any $a, b, c \in Z$, if $a \mid b$ and $a \mid c$ then $a \mid(b-c)$.
Proof: Assume $a \mid b$ and $a \mid c$
$b=a q$ and $c=a q^{\prime}$ where $q, q^{\prime} \in Z$
$b-c=a q-a q^{\prime}=a\left(q-q^{\prime}\right)$ Done?

Direct Proof.

Theorem: For any $a, b, c \in Z$, if $a \mid b$ and $a \mid c$ then $a \mid(b-c)$.
Proof: Assume $a \mid b$ and $a \mid c$
$b=a q$ and $c=a q^{\prime}$ where $q, q^{\prime} \in Z$
$b-c=a q-a q^{\prime}=a\left(q-q^{\prime}\right)$ Done?
$(b-c)=a\left(q-q^{\prime}\right)$

Direct Proof.

Theorem: For any $a, b, c \in Z$, if $a \mid b$ and $a \mid c$ then $a \mid(b-c)$.
Proof: Assume $a \mid b$ and $a \mid c$
$b=a q$ and $c=a q^{\prime}$ where $q, q^{\prime} \in Z$
$b-c=a q-a q^{\prime}=a\left(q-q^{\prime}\right)$ Done?
$(b-c)=a\left(q-q^{\prime}\right)$ and $\left(q-q^{\prime}\right)$ is an integer so by definition of divides

Direct Proof.

Theorem: For any $a, b, c \in Z$, if $a \mid b$ and $a \mid c$ then $a \mid(b-c)$.
Proof: Assume $a \mid b$ and $a \mid c$
$b=a q$ and $c=a q^{\prime}$ where $q, q^{\prime} \in Z$
$b-c=a q-a q^{\prime}=a\left(q-q^{\prime}\right)$ Done?
$(b-c)=a\left(q-q^{\prime}\right)$ and $\left(q-q^{\prime}\right)$ is an integer so by definition of divides $a \mid(b-c)$

Direct Proof.

Theorem: For any $a, b, c \in Z$, if $a \mid b$ and $a \mid c$ then $a \mid(b-c)$.
Proof: Assume $a \mid b$ and $a \mid c$
$b=a q$ and $c=a q^{\prime}$ where $q, q^{\prime} \in Z$
$b-c=a q-a q^{\prime}=a\left(q-q^{\prime}\right)$ Done?
$(b-c)=a\left(q-q^{\prime}\right)$ and $\left(q-q^{\prime}\right)$ is an integer so by definition of divides $a \mid(b-c)$

Direct Proof.

Theorem: For any $a, b, c \in Z$, if $a \mid b$ and $a \mid c$ then $a \mid(b-c)$.
Proof: Assume $a \mid b$ and $a \mid c$
$b=a q$ and $c=a q^{\prime}$ where $q, q^{\prime} \in Z$
$b-c=a q-a q^{\prime}=a\left(q-q^{\prime}\right)$ Done?
$(b-c)=a\left(q-q^{\prime}\right)$ and $\left(q-q^{\prime}\right)$ is an integer so by definition of divides $a \mid(b-c)$
Works for $\forall a, b, c$?

Direct Proof.

Theorem: For any $a, b, c \in Z$, if $a \mid b$ and $a \mid c$ then $a \mid(b-c)$.
Proof: Assume $a \mid b$ and $a \mid c$
$b=a q$ and $c=a q^{\prime}$ where $q, q^{\prime} \in Z$
$b-c=a q-a q^{\prime}=a\left(q-q^{\prime}\right)$ Done?
$(b-c)=a\left(q-q^{\prime}\right)$ and $\left(q-q^{\prime}\right)$ is an integer so by definition of divides

$$
a \mid(b-c)
$$

Works for $\forall a, b, c$?
Argument applies to every $a, b, c \in Z$.
Used distributive property and definition of divides.

Direct Proof.

Theorem: For any $a, b, c \in Z$, if $a \mid b$ and $a \mid c$ then $a \mid(b-c)$.
Proof: Assume $a \mid b$ and $a \mid c$
$b=a q$ and $c=a q^{\prime}$ where $q, q^{\prime} \in Z$
$b-c=a q-a q^{\prime}=a\left(q-q^{\prime}\right)$ Done?
$(b-c)=a\left(q-q^{\prime}\right)$ and $\left(q-q^{\prime}\right)$ is an integer so by definition of divides

$$
a \mid(b-c)
$$

Works for $\forall a, b, c$?
Argument applies to every $a, b, c \in Z$.
Used distributive property and definition of divides.
Direct Proof Form:

Direct Proof.

Theorem: For any $a, b, c \in Z$, if $a \mid b$ and $a \mid c$ then $a \mid(b-c)$.
Proof: Assume $a \mid b$ and $a \mid c$
$b=a q$ and $c=a q^{\prime}$ where $q, q^{\prime} \in Z$
$b-c=a q-a q^{\prime}=a\left(q-q^{\prime}\right)$ Done?
$(b-c)=a\left(q-q^{\prime}\right)$ and $\left(q-q^{\prime}\right)$ is an integer so by definition of divides

$$
a \mid(b-c)
$$

Works for $\forall a, b, c$?
Argument applies to every $a, b, c \in Z$.
Used distributive property and definition of divides.
Direct Proof Form:
Goal: $P \Longrightarrow Q$

Direct Proof.

Theorem: For any $a, b, c \in Z$, if $a \mid b$ and $a \mid c$ then $a \mid(b-c)$.
Proof: Assume $a \mid b$ and $a \mid c$
$b=a q$ and $c=a q^{\prime}$ where $q, q^{\prime} \in Z$
$b-c=a q-a q^{\prime}=a\left(q-q^{\prime}\right)$ Done?
$(b-c)=a\left(q-q^{\prime}\right)$ and $\left(q-q^{\prime}\right)$ is an integer so by definition of divides

$$
a \mid(b-c)
$$

Works for $\forall a, b, c$?
Argument applies to every $a, b, c \in Z$.
Used distributive property and definition of divides.
Direct Proof Form:
Goal: $P \Longrightarrow Q$
Assume P.

Direct Proof.

Theorem: For any $a, b, c \in Z$, if $a \mid b$ and $a \mid c$ then $a \mid(b-c)$.
Proof: Assume $a \mid b$ and $a \mid c$
$b=a q$ and $c=a q^{\prime}$ where $q, q^{\prime} \in Z$
$b-c=a q-a q^{\prime}=a\left(q-q^{\prime}\right)$ Done?
$(b-c)=a\left(q-q^{\prime}\right)$ and $\left(q-q^{\prime}\right)$ is an integer so by definition of divides

$$
a \mid(b-c)
$$

Works for $\forall a, b, c$?
Argument applies to every $a, b, c \in Z$.
Used distributive property and definition of divides.
Direct Proof Form:
Goal: $P \Longrightarrow Q$
Assume P.

Direct Proof.

Theorem: For any $a, b, c \in Z$, if $a \mid b$ and $a \mid c$ then $a \mid(b-c)$.
Proof: Assume $a \mid b$ and $a \mid c$
$b=a q$ and $c=a q^{\prime}$ where $q, q^{\prime} \in Z$
$b-c=a q-a q^{\prime}=a\left(q-q^{\prime}\right)$ Done?
$(b-c)=a\left(q-q^{\prime}\right)$ and $\left(q-q^{\prime}\right)$ is an integer so by definition of divides

$$
a \mid(b-c)
$$

Works for $\forall a, b, c$?
Argument applies to every $a, b, c \in Z$.
Used distributive property and definition of divides.
Direct Proof Form:
Goal: $P \Longrightarrow Q$
Assume P.
Therefore Q.

Another direct proof.

Let D_{3} be the 3 digit natural numbers.

Another direct proof.

Let D_{3} be the 3 digit natural numbers.
Theorem: For $n \in D_{3}$, if the alternating sum of digits of n is divisible by 11 , then $11 \mid n$.

Another direct proof.

Let D_{3} be the 3 digit natural numbers.
Theorem: For $n \in D_{3}$, if the alternating sum of digits of n is divisible by 11 , then $11 \mid n$.

Another direct proof.

Let D_{3} be the 3 digit natural numbers.
Theorem: For $n \in D_{3}$, if the alternating sum of digits of n is divisible by 11 , then $11 \mid n$.
$\forall n \in D_{3},(11 \mid$ alt. sum of digits of $n) \Longrightarrow 11 \mid n$

Another direct proof.

Let D_{3} be the 3 digit natural numbers.
Theorem: For $n \in D_{3}$, if the alternating sum of digits of n is divisible by 11 , then $11 \mid n$.
$\forall n \in D_{3},(11 \mid$ alt. sum of digits of $n) \Longrightarrow 11 \mid n$
Examples:
$n=121$

Another direct proof.

Let D_{3} be the 3 digit natural numbers.
Theorem: For $n \in D_{3}$, if the alternating sum of digits of n is divisible by 11 , then $11 \mid n$.
$\forall n \in D_{3},(11 \mid$ alt. sum of digits of $n) \Longrightarrow 11 \mid n$
Examples:
$n=121$ Alt Sum: $1-2+1=0$.

Another direct proof.

Let D_{3} be the 3 digit natural numbers.
Theorem: For $n \in D_{3}$, if the alternating sum of digits of n is divisible by 11 , then $11 \mid n$.
$\forall n \in D_{3},(11 \mid$ alt. sum of digits of $n) \Longrightarrow 11 \mid n$
Examples:
$n=121$ Alt Sum: $1-2+1=0$. Divis. by 11 .

Another direct proof.

Let D_{3} be the 3 digit natural numbers.
Theorem: For $n \in D_{3}$, if the alternating sum of digits of n is divisible by 11 , then $11 \mid n$.
$\forall n \in D_{3},(11 \mid$ alt. sum of digits of $n) \Longrightarrow 11 \mid n$
Examples:
$n=121$ Alt Sum: $1-2+1=0$. Divis. by 11. As is 121 .

Another direct proof.

Let D_{3} be the 3 digit natural numbers.
Theorem: For $n \in D_{3}$, if the alternating sum of digits of n is divisible by 11 , then $11 \mid n$.
$\forall n \in D_{3},(11 \mid$ alt. sum of digits of $n) \Longrightarrow 11 \mid n$
Examples:
$n=121$ Alt Sum: $1-2+1=0$. Divis. by 11. As is 121 .
$n=605$

Another direct proof.

Let D_{3} be the 3 digit natural numbers.
Theorem: For $n \in D_{3}$, if the alternating sum of digits of n is divisible by 11 , then $11 \mid n$.
$\forall n \in D_{3},(11 \mid$ alt. sum of digits of $n) \Longrightarrow 11 \mid n$
Examples:
$n=121$ Alt Sum: $1-2+1=0$. Divis. by 11. As is 121 .
$n=605$ Alt Sum: $6-0+5=11$

Another direct proof.

Let D_{3} be the 3 digit natural numbers.
Theorem: For $n \in D_{3}$, if the alternating sum of digits of n is divisible by 11 , then $11 \mid n$.
$\forall n \in D_{3},(11 \mid$ alt. sum of digits of $n) \Longrightarrow 11 \mid n$
Examples:
$n=121$ Alt Sum: $1-2+1=0$. Divis. by 11. As is 121 .
$n=605$ Alt Sum: $6-0+5=11$ Divis. by 11 .

Another direct proof.

Let D_{3} be the 3 digit natural numbers.
Theorem: For $n \in D_{3}$, if the alternating sum of digits of n is divisible by 11 , then $11 \mid n$.
$\forall n \in D_{3},(11 \mid$ alt. sum of digits of $n) \Longrightarrow 11 \mid n$
Examples:
$n=121$ Alt Sum: $1-2+1=0$. Divis. by 11. As is 121 .
$n=605$ Alt Sum: $6-0+5=11$ Divis. by 11. As is 605

Another direct proof.

Let D_{3} be the 3 digit natural numbers.
Theorem: For $n \in D_{3}$, if the alternating sum of digits of n is divisible by 11 , then $11 \mid n$.
$\forall n \in D_{3},(11 \mid$ alt. sum of digits of $n) \Longrightarrow 11 \mid n$
Examples:
$n=121$ Alt Sum: $1-2+1=0$. Divis. by 11 . As is 121 .
$n=605$ Alt Sum: $6-0+5=11$ Divis. by 11 . As is $605=11(55)$

Another direct proof.

Let D_{3} be the 3 digit natural numbers.
Theorem: For $n \in D_{3}$, if the alternating sum of digits of n is divisible by 11 , then $11 \mid n$.
$\forall n \in D_{3},(11 \mid$ alt. sum of digits of $n) \Longrightarrow 11 \mid n$
Examples:
$n=121$ Alt Sum: $1-2+1=0$. Divis. by 11 . As is 121 .
$n=605$ Alt Sum: $6-0+5=11$ Divis. by 11 . As is $605=11(55)$

Another direct proof.

Let D_{3} be the 3 digit natural numbers.
Theorem: For $n \in D_{3}$, if the alternating sum of digits of n is divisible by 11 , then $11 \mid n$.
$\forall n \in D_{3},(11 \mid$ alt. sum of digits of $n) \Longrightarrow 11 \mid n$
Examples:

$$
\begin{aligned}
& n=121 \text { Alt Sum: } 1-2+1=0 \text {. Divis. by } 11 \text {. As is } 121 . \\
& n=605 \text { Alt Sum: } 6-0+5=11 \text { Divis. by } 11 \text {. As is } 605=11(55)
\end{aligned}
$$

Proof: For $n \in D_{3}$,

Another direct proof.

Let D_{3} be the 3 digit natural numbers.
Theorem: For $n \in D_{3}$, if the alternating sum of digits of n is divisible by 11 , then $11 \mid n$.
$\forall n \in D_{3},(11 \mid$ alt. sum of digits of $n) \Longrightarrow 11 \mid n$
Examples:
$n=121$ Alt Sum: $1-2+1=0$. Divis. by 11 . As is 121 .
$n=605$ Alt Sum: $6-0+5=11$ Divis. by 11 . As is $605=11(55)$
Proof: For $n \in D_{3}, n=100 a+10 b+c$, for some a, b, c.

Another direct proof.

Let D_{3} be the 3 digit natural numbers.
Theorem: For $n \in D_{3}$, if the alternating sum of digits of n is divisible by 11 , then $11 \mid n$.
$\forall n \in D_{3},(11 \mid$ alt. sum of digits of $n) \Longrightarrow 11 \mid n$
Examples:
$n=121$ Alt Sum: $1-2+1=0$. Divis. by 11 . As is 121 .
$n=605$ Alt Sum: $6-0+5=11$ Divis. by 11 . As is $605=11(55)$
Proof: For $n \in D_{3}, n=100 a+10 b+c$, for some a, b, c.
Assume: Alt. sum:

Another direct proof.

Let D_{3} be the 3 digit natural numbers.
Theorem: For $n \in D_{3}$, if the alternating sum of digits of n is divisible by 11 , then $11 \mid n$.
$\forall n \in D_{3},(11 \mid$ alt. sum of digits of $n) \Longrightarrow 11 \mid n$
Examples:
$n=121$ Alt Sum: $1-2+1=0$. Divis. by 11. As is 121 .
$n=605$ Alt Sum: $6-0+5=11$ Divis. by 11 . As is $605=11(55)$
Proof: For $n \in D_{3}, n=100 a+10 b+c$, for some a, b, c.
Assume: Alt. sum: $a-b+c$

Another direct proof.

Let D_{3} be the 3 digit natural numbers.
Theorem: For $n \in D_{3}$, if the alternating sum of digits of n is divisible by 11 , then $11 \mid n$.
$\forall n \in D_{3},(11 \mid$ alt. sum of digits of $n) \Longrightarrow 11 \mid n$
Examples:
$n=121$ Alt Sum: $1-2+1=0$. Divis. by 11. As is 121 .
$n=605$ Alt Sum: $6-0+5=11$ Divis. by 11 . As is $605=11(55)$
Proof: For $n \in D_{3}, n=100 a+10 b+c$, for some a, b, c.
Assume: Alt. sum: $a-b+c=11 k$ for some integer k.

Another direct proof.

Let D_{3} be the 3 digit natural numbers.
Theorem: For $n \in D_{3}$, if the alternating sum of digits of n is divisible by 11 , then $11 \mid n$.
$\forall n \in D_{3},(11 \mid$ alt. sum of digits of $n) \Longrightarrow 11 \mid n$
Examples:
$n=121$ Alt Sum: $1-2+1=0$. Divis. by 11. As is 121 .
$n=605$ Alt Sum: $6-0+5=11$ Divis. by 11 . As is $605=11(55)$
Proof: For $n \in D_{3}, n=100 a+10 b+c$, for some a, b, c.
Assume: Alt. sum: $a-b+c=11 k$ for some integer k.
Add $99 a+11 b$ to both sides.

Another direct proof.

Let D_{3} be the 3 digit natural numbers.
Theorem: For $n \in D_{3}$, if the alternating sum of digits of n is divisible by 11 , then $11 \mid n$.
$\forall n \in D_{3},(11 \mid$ alt. sum of digits of $n) \Longrightarrow 11 \mid n$
Examples:
$n=121$ Alt Sum: $1-2+1=0$. Divis. by 11 . As is 121 .
$n=605$ Alt Sum: $6-0+5=11$ Divis. by 11 . As is $605=11(55)$
Proof: For $n \in D_{3}, n=100 a+10 b+c$, for some a, b, c.
Assume: Alt. sum: $a-b+c=11 k$ for some integer k.
Add $99 a+11 b$ to both sides.

$$
100 a+10 b+c=11 k+99 a+11 b
$$

Another direct proof.

Let D_{3} be the 3 digit natural numbers.
Theorem: For $n \in D_{3}$, if the alternating sum of digits of n is divisible by 11 , then $11 \mid n$.
$\forall n \in D_{3},(11 \mid$ alt. sum of digits of $n) \Longrightarrow 11 \mid n$
Examples:
$n=121$ Alt Sum: $1-2+1=0$. Divis. by 11. As is 121 .
$n=605$ Alt Sum: $6-0+5=11$ Divis. by 11 . As is $605=11(55)$
Proof: For $n \in D_{3}, n=100 a+10 b+c$, for some a, b, c.
Assume: Alt. sum: $a-b+c=11 k$ for some integer k.
Add $99 a+11 b$ to both sides.

$$
100 a+10 b+c=11 k+99 a+11 b=11(k+9 a+b)
$$

Another direct proof.

Let D_{3} be the 3 digit natural numbers.
Theorem: For $n \in D_{3}$, if the alternating sum of digits of n is divisible by 11 , then $11 \mid n$.
$\forall n \in D_{3},(11 \mid$ alt. sum of digits of $n) \Longrightarrow 11 \mid n$
Examples:
$n=121$ Alt Sum: $1-2+1=0$. Divis. by 11 . As is 121 .
$n=605$ Alt Sum: $6-0+5=11$ Divis. by 11 . As is $605=11(55)$
Proof: For $n \in D_{3}, n=100 a+10 b+c$, for some a, b, c.
Assume: Alt. sum: $a-b+c=11 k$ for some integer k.
Add $99 a+11 b$ to both sides.

$$
100 a+10 b+c=11 k+99 a+11 b=11(k+9 a+b)
$$

Left hand side is n,

Another direct proof.

Let D_{3} be the 3 digit natural numbers.
Theorem: For $n \in D_{3}$, if the alternating sum of digits of n is divisible by 11 , then $11 \mid n$.
$\forall n \in D_{3},(11 \mid$ alt. sum of digits of $n) \Longrightarrow 11 \mid n$
Examples:
$n=121$ Alt Sum: $1-2+1=0$. Divis. by 11 . As is 121 .
$n=605$ Alt Sum: $6-0+5=11$ Divis. by 11 . As is $605=11(55)$
Proof: For $n \in D_{3}, n=100 a+10 b+c$, for some a, b, c.
Assume: Alt. sum: $a-b+c=11 k$ for some integer k.
Add $99 a+11 b$ to both sides.

$$
100 a+10 b+c=11 k+99 a+11 b=11(k+9 a+b)
$$

Left hand side is $n, k+9 a+b$ is integer.

Another direct proof.

Let D_{3} be the 3 digit natural numbers.
Theorem: For $n \in D_{3}$, if the alternating sum of digits of n is divisible by 11 , then $11 \mid n$.
$\forall n \in D_{3},(11 \mid$ alt. sum of digits of $n) \Longrightarrow 11 \mid n$
Examples:
$n=121$ Alt Sum: $1-2+1=0$. Divis. by 11 . As is 121 .
$n=605$ Alt Sum: $6-0+5=11$ Divis. by 11 . As is $605=11(55)$
Proof: For $n \in D_{3}, n=100 a+10 b+c$, for some a, b, c.
Assume: Alt. sum: $a-b+c=11 k$ for some integer k.
Add $99 a+11 b$ to both sides.

$$
100 a+10 b+c=11 k+99 a+11 b=11(k+9 a+b)
$$

Left hand side is $n, k+9 a+b$ is integer. $\Longrightarrow 11 \mid n$.

Another direct proof.

Let D_{3} be the 3 digit natural numbers.
Theorem: For $n \in D_{3}$, if the alternating sum of digits of n is divisible by 11 , then $11 \mid n$.
$\forall n \in D_{3},(11 \mid$ alt. sum of digits of $n) \Longrightarrow 11 \mid n$
Examples:
$n=121$ Alt Sum: $1-2+1=0$. Divis. by 11 . As is 121 .
$n=605$ Alt Sum: $6-0+5=11$ Divis. by 11 . As is $605=11(55)$
Proof: For $n \in D_{3}, n=100 a+10 b+c$, for some a, b, c.
Assume: Alt. sum: $a-b+c=11 k$ for some integer k.
Add $99 a+11 b$ to both sides.

$$
100 a+10 b+c=11 k+99 a+11 b=11(k+9 a+b)
$$

Left hand side is $n, k+9 a+b$ is integer. $\Longrightarrow 11 \mid n$.

Another direct proof.

Let D_{3} be the 3 digit natural numbers.
Theorem: For $n \in D_{3}$, if the alternating sum of digits of n is divisible by 11 , then $11 \mid n$.
$\forall n \in D_{3},(11 \mid$ alt. sum of digits of $n) \Longrightarrow 11 \mid n$
Examples:
$n=121$ Alt Sum: $1-2+1=0$. Divis. by 11 . As is 121 .
$n=605$ Alt Sum: $6-0+5=11$ Divis. by 11 . As is $605=11(55)$
Proof: For $n \in D_{3}, n=100 a+10 b+c$, for some a, b, c.
Assume: Alt. sum: $a-b+c=11 k$ for some integer k.
Add $99 a+11 b$ to both sides.

$$
100 a+10 b+c=11 k+99 a+11 b=11(k+9 a+b)
$$

Left hand side is $n, k+9 a+b$ is integer. $\Longrightarrow 11 \mid n$.
Direct proof of $P \Longrightarrow Q$:

Another direct proof.

Let D_{3} be the 3 digit natural numbers.
Theorem: For $n \in D_{3}$, if the alternating sum of digits of n is divisible by 11 , then $11 \mid n$.
$\forall n \in D_{3},(11 \mid$ alt. sum of digits of $n) \Longrightarrow 11 \mid n$
Examples:
$n=121$ Alt Sum: $1-2+1=0$. Divis. by 11 . As is 121 .
$n=605$ Alt Sum: $6-0+5=11$ Divis. by 11 . As is $605=11(55)$
Proof: For $n \in D_{3}, n=100 a+10 b+c$, for some a, b, c.
Assume: Alt. sum: $a-b+c=11 k$ for some integer k.
Add $99 a+11 b$ to both sides.

$$
100 a+10 b+c=11 k+99 a+11 b=11(k+9 a+b)
$$

Left hand side is $n, k+9 a+b$ is integer. $\Longrightarrow 11 \mid n$.
Direct proof of $P \Longrightarrow Q$:
Assumed $P: 11 \mid a-b+c$.

Another direct proof.

Let D_{3} be the 3 digit natural numbers.
Theorem: For $n \in D_{3}$, if the alternating sum of digits of n is divisible by 11 , then $11 \mid n$.
$\forall n \in D_{3},(11 \mid$ alt. sum of digits of $n) \Longrightarrow 11 \mid n$
Examples:
$n=121$ Alt Sum: $1-2+1=0$. Divis. by 11 . As is 121 .
$n=605$ Alt Sum: $6-0+5=11$ Divis. by 11 . As is $605=11(55)$
Proof: For $n \in D_{3}, n=100 a+10 b+c$, for some a, b, c.
Assume: Alt. sum: $a-b+c=11 k$ for some integer k.
Add $99 a+11 b$ to both sides.

$$
100 a+10 b+c=11 k+99 a+11 b=11(k+9 a+b)
$$

Left hand side is $n, k+9 a+b$ is integer. $\Longrightarrow 11 \mid n$.
Direct proof of $P \Longrightarrow Q$:
Assumed $P: 11 \mid a-b+c$. Proved $Q: 11 \mid n$.

The Converse

Thm: $\forall n \in D_{3},(11 \mid$ alt. sum of digits of $n) \Longrightarrow 11 \mid n$

The Converse

Thm: $\forall n \in D_{3},(11 \mid$ alt. sum of digits of $n) \Longrightarrow 11 \mid n$
Is converse a theorem?
$\forall n \in D_{3},(11 \mid n) \Longrightarrow$ (11|alt. sum of digits of n)

The Converse

Thm: $\forall n \in D_{3},(11 \mid$ alt. sum of digits of $n) \Longrightarrow 11 \mid n$
Is converse a theorem?
$\forall n \in D_{3},(11 \mid n) \Longrightarrow$ (11|alt. sum of digits of n)
Yes?

The Converse

Thm: $\forall n \in D_{3},(11 \mid$ alt. sum of digits of $n) \Longrightarrow 11 \mid n$
Is converse a theorem?
$\forall n \in D_{3},(11 \mid n) \Longrightarrow$ (11|alt. sum of digits of n)
Yes? No?

Another Direct Proof.

Theorem: $\forall n \in D_{3},(11 \mid n) \Longrightarrow(11 \mid a l t$. sum of digits of $n)$

Another Direct Proof.

Theorem: $\forall n \in D_{3},(11 \mid n) \Longrightarrow(11 \mid a l t$. sum of digits of $n)$ Proof:

Another Direct Proof.

Theorem: $\forall n \in D_{3},(11 \mid n) \Longrightarrow$ (11|alt. sum of digits of n) Proof: Assume 11|n.

Another Direct Proof.

Theorem: $\forall n \in D_{3},(11 \mid n) \Longrightarrow$ (11|alt. sum of digits of n) Proof: Assume 11|n.

$$
n=100 a+10 b+c=11 k
$$

Another Direct Proof.

Theorem: $\forall n \in D_{3},(11 \mid n) \Longrightarrow$ (11|alt. sum of digits of n) Proof: Assume 11|n.

$$
\begin{aligned}
& n=100 a+10 b+c=11 k \Longrightarrow \\
& 99 a+11 b+(a-b+c)=11 k
\end{aligned}
$$

Another Direct Proof.

Theorem: $\forall n \in D_{3},(11 \mid n) \Longrightarrow$ (11|alt. sum of digits of n) Proof: Assume 11|n.

$$
\begin{aligned}
& n=100 a+10 b+c=11 k \Longrightarrow \\
& 99 a+11 b+(a-b+c)=11 k \Longrightarrow \\
& \quad a-b+c=11 k-99 a-11 b
\end{aligned}
$$

Another Direct Proof.

Theorem: $\forall n \in D_{3},(11 \mid n) \Longrightarrow$ (11|alt. sum of digits of n) Proof: Assume 11|n.

$$
\begin{aligned}
& n=100 a+10 b+c=11 k \Longrightarrow \\
& 99 a+11 b+(a-b+c)=11 k \Longrightarrow \\
& \quad a-b+c=11 k-99 a-11 b \Longrightarrow \\
& \quad a-b+c=11(k-9 a-b)
\end{aligned}
$$

Another Direct Proof.

Theorem: $\forall n \in D_{3},(11 \mid n) \Longrightarrow$ (11|alt. sum of digits of n) Proof: Assume 11|n.

$$
\begin{gathered}
n=100 a+10 b+c=11 k \Longrightarrow \\
99 a+11 b+(a-b+c)=11 k \Longrightarrow \\
a-b+c=11 k-99 a-11 b \Longrightarrow \\
a-b+c=11(k-9 a-b) \Longrightarrow \\
a-b+c=11 \ell
\end{gathered}
$$

Another Direct Proof.

Theorem: $\forall n \in D_{3},(11 \mid n) \Longrightarrow(11 \mid$ alt. sum of digits of $n)$ Proof: Assume 11|n.

$$
\begin{aligned}
& n=100 a+10 b+c=11 k \Longrightarrow \\
& \begin{array}{l}
99 a+11 b+(a-b+c)=11 k \Longrightarrow \\
\quad a-b+c=11 k-99 a-11 b \Longrightarrow \\
\quad a-b+c=11(k-9 a-b) \Longrightarrow \\
\quad a-b+c=11 \ell \text { where } \ell=(k-9 a-b) \in Z
\end{array}
\end{aligned}
$$

Another Direct Proof.

Theorem: $\forall n \in D_{3},(11 \mid n) \Longrightarrow$ (11|alt. sum of digits of n) Proof: Assume 11|n.

$$
\begin{aligned}
& n=100 a+10 b+c=11 k \Longrightarrow \\
& 99 a+11 b+(a-b+c)=11 k \Longrightarrow \\
& \quad a-b+c=11 k-99 a-11 b \Longrightarrow \\
& \quad a-b+c=11(k-9 a-b) \Longrightarrow \\
& \quad a-b+c=11 \ell \text { where } \ell=(k-9 a-b) \in Z
\end{aligned}
$$

That is 11 |alternating sum of digits.

Another Direct Proof.

Theorem: $\forall n \in D_{3},(11 \mid n) \Longrightarrow(11 \mid$ alt. sum of digits of $n)$ Proof: Assume 11|n.

$$
\begin{aligned}
& n=100 a+10 b+c=11 k \Longrightarrow \\
& \begin{array}{l}
99 a+11 b+(a-b+c)=11 k \Longrightarrow \\
a-b+c=11 k-99 a-11 b \Longrightarrow \\
\quad a-b+c=11(k-9 a-b) \Longrightarrow \\
\quad a-b+c=11 \ell \text { where } \ell=(k-9 a-b) \in Z
\end{array}
\end{aligned}
$$

That is 11 |alternating sum of digits.
Note: similar proof to other. In this case every \Longrightarrow is \Longleftrightarrow

Another Direct Proof.

Theorem: $\forall n \in D_{3},(11 \mid n) \Longrightarrow(11 \mid$ alt. sum of digits of $n)$ Proof: Assume 11|n.

$$
\begin{aligned}
& n=100 a+10 b+c=11 k \Longrightarrow \\
& 99 a+11 b+(a-b+c)=11 k \Longrightarrow \\
& \quad a-b+c=11 k-99 a-11 b \Longrightarrow \\
& \quad a-b+c=11(k-9 a-b) \Longrightarrow \\
& \quad a-b+c=11 \ell \text { where } \ell=(k-9 a-b) \in Z
\end{aligned}
$$

That is 11 |alternating sum of digits.
Note: similar proof to other. In this case every \Longrightarrow is \Longleftrightarrow
Often works with arithmetic properties ...

Another Direct Proof.

Theorem: $\forall n \in D_{3},(11 \mid n) \Longrightarrow(11 \mid$ alt. sum of digits of $n)$ Proof: Assume 11|n.

$$
\begin{aligned}
& n=100 a+10 b+c=11 k \Longrightarrow \\
& 99 a+11 b+(a-b+c)=11 k \Longrightarrow \\
& a-b+c=11 k-99 a-11 b \Longrightarrow \\
& \quad a-b+c=11(k-9 a-b) \Longrightarrow \\
& \quad a-b+c=11 \ell \text { where } \ell=(k-9 a-b) \in Z
\end{aligned}
$$

That is 11 |alternating sum of digits.
Note: similar proof to other. In this case every \Longrightarrow is \Longleftrightarrow
Often works with arithmetic properties ...
...not when multiplying by 0 .

Another Direct Proof.

Theorem: $\forall n \in D_{3},(11 \mid n) \Longrightarrow(11 \mid$ alt. sum of digits of $n)$ Proof: Assume 11|n.

$$
\begin{aligned}
& n=100 a+10 b+c=11 k \Longrightarrow \\
& 99 a+11 b+(a-b+c)=11 k \Longrightarrow \\
& a-b+c=11 k-99 a-11 b \Longrightarrow \\
& \quad a-b+c=11(k-9 a-b) \Longrightarrow \\
& \quad a-b+c=11 \ell \text { where } \ell=(k-9 a-b) \in Z
\end{aligned}
$$

That is 11 |alternating sum of digits.
Note: similar proof to other. In this case every \Longrightarrow is \Longleftrightarrow
Often works with arithmetic properties ...
...not when multiplying by 0 .
We have.

Another Direct Proof.

Theorem: $\forall n \in D_{3},(11 \mid n) \Longrightarrow(11 \mid$ alt. sum of digits of $n)$ Proof: Assume 11|n.

$$
\begin{aligned}
& n=100 a+10 b+c=11 k \Longrightarrow \\
& 99 a+11 b+(a-b+c)=11 k \Longrightarrow \\
& \quad a-b+c=11 k-99 a-11 b \Longrightarrow \\
& \quad a-b+c=11(k-9 a-b) \Longrightarrow \\
& \quad a-b+c=11 \ell \text { where } \ell=(k-9 a-b) \in Z
\end{aligned}
$$

That is 11 |alternating sum of digits.
Note: similar proof to other. In this case every \Longrightarrow is \Longleftrightarrow
Often works with arithmetic properties ...
...not when multiplying by 0 .
We have.
Theorem: $\forall n \in N^{\prime},(11 \mid a l$ al. sum of digits of $n) \Longleftrightarrow(11 \mid n)$

Proof by Contraposition

Proof by Contraposition

Thm: For $n \in Z^{+}$and $d \mid n$. If n is odd then d is odd.

Proof by Contraposition

Thm: For $n \in Z^{+}$and $d \mid n$. If n is odd then d is odd.
$n=k d$ and $n=2 k^{\prime}+1$ for integers k, k^{\prime}.

Proof by Contraposition

Thm: For $n \in Z^{+}$and $d \mid n$. If n is odd then d is odd.
$n=k d$ and $n=2 k^{\prime}+1$ for integers k, k^{\prime}.
what do we know about d ?

Proof by Contraposition

Thm: For $n \in Z^{+}$and $d \mid n$. If n is odd then d is odd.
$n=k d$ and $n=2 k^{\prime}+1$ for integers k, k^{\prime}.
what do we know about d ?
Goal: Prove $P \Longrightarrow Q$.

Proof by Contraposition

Thm: For $n \in Z^{+}$and $d \mid n$. If n is odd then d is odd.
$n=k d$ and $n=2 k^{\prime}+1$ for integers k, k^{\prime}.
what do we know about d ?
Goal: Prove $P \Longrightarrow Q$.

Proof by Contraposition

Thm: For $n \in Z^{+}$and $d \mid n$. If n is odd then d is odd.
$n=k d$ and $n=2 k^{\prime}+1$ for integers k, k^{\prime}.
what do we know about d ?
Goal: Prove $P \Longrightarrow Q$.
Assume $\neg Q$

Proof by Contraposition

Thm: For $n \in Z^{+}$and $d \mid n$. If n is odd then d is odd.
$n=k d$ and $n=2 k^{\prime}+1$ for integers k, k^{\prime}.
what do we know about d ?
Goal: Prove $P \Longrightarrow Q$.
Assume $\neg Q$
...and prove $\neg P$.

Proof by Contraposition

Thm: For $n \in Z^{+}$and $d \mid n$. If n is odd then d is odd.
$n=k d$ and $n=2 k^{\prime}+1$ for integers k, k^{\prime}.
what do we know about d ?
Goal: Prove $P \Longrightarrow Q$.
Assume $\neg Q$
...and prove $\neg P$.
Conclusion: $\neg Q \Longrightarrow \neg P$

Proof by Contraposition

Thm: For $n \in Z^{+}$and $d \mid n$. If n is odd then d is odd.

$$
n=k d \text { and } n=2 k^{\prime}+1 \text { for integers } k, k^{\prime} .
$$

what do we know about d ?
Goal: Prove $P \Longrightarrow Q$.
Assume $\neg Q$
...and prove $\neg P$.
Conclusion: $\neg Q \Longrightarrow \neg P$ equivalent to $P \Longrightarrow Q$.

Proof by Contraposition

Thm: For $n \in Z^{+}$and $d \mid n$. If n is odd then d is odd.

$$
n=k d \text { and } n=2 k^{\prime}+1 \text { for integers } k, k^{\prime} .
$$

what do we know about d ?
Goal: Prove $P \Longrightarrow Q$.
Assume $\neg Q$
...and prove $\neg P$.
Conclusion: $\neg Q \Longrightarrow \neg P$ equivalent to $P \Longrightarrow Q$.
Proof: Assume $\neg Q: d$ is even.

Proof by Contraposition

Thm: For $n \in Z^{+}$and $d \mid n$. If n is odd then d is odd.

$$
n=k d \text { and } n=2 k^{\prime}+1 \text { for integers } k, k^{\prime} .
$$

what do we know about d ?
Goal: Prove $P \Longrightarrow Q$.
Assume $\neg Q$
...and prove $\neg P$.
Conclusion: $\neg Q \Longrightarrow \neg P$ equivalent to $P \Longrightarrow Q$.
Proof: Assume $\neg Q$: d is even. $d=2 k$.

Proof by Contraposition

Thm: For $n \in Z^{+}$and $d \mid n$. If n is odd then d is odd.

$$
n=k d \text { and } n=2 k^{\prime}+1 \text { for integers } k, k^{\prime} .
$$

what do we know about d ?
Goal: Prove $P \Longrightarrow Q$.
Assume $\neg Q$
...and prove $\neg P$.
Conclusion: $\neg Q \Longrightarrow \neg P$ equivalent to $P \Longrightarrow Q$.
Proof: Assume $\neg Q$: d is even. $d=2 k$.
$d \mid n$ so we have

Proof by Contraposition

Thm: For $n \in Z^{+}$and $d \mid n$. If n is odd then d is odd.

$$
n=k d \text { and } n=2 k^{\prime}+1 \text { for integers } k, k^{\prime} .
$$

what do we know about d ?
Goal: Prove $P \Longrightarrow Q$.
Assume $\neg Q$
...and prove $\neg P$.
Conclusion: $\neg Q \Longrightarrow \neg P$ equivalent to $P \Longrightarrow Q$.
Proof: Assume $\neg Q$: d is even. $d=2 k$.
$d \mid n$ so we have

$$
n=q d
$$

Proof by Contraposition

Thm: For $n \in Z^{+}$and $d \mid n$. If n is odd then d is odd.

$$
n=k d \text { and } n=2 k^{\prime}+1 \text { for integers } k, k^{\prime} .
$$

what do we know about d ?
Goal: Prove $P \Longrightarrow Q$.
Assume $\neg Q$
...and prove $\neg P$.
Conclusion: $\neg Q \Longrightarrow \neg P$ equivalent to $P \Longrightarrow Q$.
Proof: Assume $\neg Q$: d is even. $d=2 k$.
$d \mid n$ so we have

$$
n=q d=q(2 k)
$$

Proof by Contraposition

Thm: For $n \in Z^{+}$and $d \mid n$. If n is odd then d is odd.

$$
n=k d \text { and } n=2 k^{\prime}+1 \text { for integers } k, k^{\prime} .
$$

what do we know about d ?
Goal: Prove $P \Longrightarrow Q$.
Assume $\neg Q$
...and prove $\neg P$.
Conclusion: $\neg Q \Longrightarrow \neg P$ equivalent to $P \Longrightarrow Q$.
Proof: Assume $\neg Q$: d is even. $d=2 k$.
$d \mid n$ so we have

$$
n=q d=q(2 k)=2(k q)
$$

Proof by Contraposition

Thm: For $n \in Z^{+}$and $d \mid n$. If n is odd then d is odd.

$$
n=k d \text { and } n=2 k^{\prime}+1 \text { for integers } k, k^{\prime} .
$$

what do we know about d ?
Goal: Prove $P \Longrightarrow Q$.
Assume $\neg Q$
...and prove $\neg P$.
Conclusion: $\neg Q \Longrightarrow \neg P$ equivalent to $P \Longrightarrow Q$.
Proof: Assume $\neg Q$: d is even. $d=2 k$.
$d \mid n$ so we have

$$
n=q d=q(2 k)=2(k q)
$$

n is even.

Proof by Contraposition

Thm: For $n \in Z^{+}$and $d \mid n$. If n is odd then d is odd.

$$
n=k d \text { and } n=2 k^{\prime}+1 \text { for integers } k, k^{\prime} .
$$

what do we know about d ?
Goal: Prove $P \Longrightarrow Q$.
Assume $\neg Q$
...and prove $\neg P$.
Conclusion: $\neg Q \Longrightarrow \neg P$ equivalent to $P \Longrightarrow Q$.
Proof: Assume $\neg Q$: d is even. $d=2 k$.
$d \mid n$ so we have

$$
n=q d=q(2 k)=2(k q)
$$

n is even. $\neg P$

Proof by Contraposition

Thm: For $n \in Z^{+}$and $d \mid n$. If n is odd then d is odd.

$$
n=k d \text { and } n=2 k^{\prime}+1 \text { for integers } k, k^{\prime} .
$$

what do we know about d ?
Goal: Prove $P \Longrightarrow Q$.
Assume $\neg Q$
...and prove $\neg P$.
Conclusion: $\neg Q \Longrightarrow \neg P$ equivalent to $P \Longrightarrow Q$.
Proof: Assume $\neg Q$: d is even. $d=2 k$.
$d \mid n$ so we have

$$
n=q d=q(2 k)=2(k q)
$$

n is even. $\neg P$

Another Contraposition...

Another Contraposition...

Lemma: For every n in N, n^{2} is even $\Longrightarrow n$ is even. $(P \Longrightarrow Q)$

Another Contraposition...

Lemma: For every n in N, n^{2} is even $\Longrightarrow n$ is even. $(P \Longrightarrow Q)$ n^{2} is even, $n^{2}=2 k, \ldots$

Another Contraposition...

Lemma: For every n in N, n^{2} is even $\Longrightarrow n$ is even. $(P \Longrightarrow Q)$ n^{2} is even, $n^{2}=2 k, \ldots \sqrt{2 k}$ even?

Another Contraposition...

Lemma: For every n in N, n^{2} is even $\Longrightarrow n$ is even. $(P \Longrightarrow Q)$

Proof by contraposition: $(P \Longrightarrow Q) \equiv(\neg Q \Longrightarrow \neg P)$

Another Contraposition...

Lemma: For every n in N, n^{2} is even $\Longrightarrow n$ is even. $(P \Longrightarrow Q)$

Proof by contraposition: $(P \Longrightarrow Q) \equiv(\neg Q \Longrightarrow \neg P)$
$P=n^{2}$ is even.'

Another Contraposition...

Lemma: For every n in N, n^{2} is even $\Longrightarrow n$ is even. $(P \Longrightarrow Q)$

Proof by contraposition: $(P \Longrightarrow Q) \equiv(\neg Q \Longrightarrow \neg P)$
$P=n^{2}$ is even.' $\neg P={ }^{\prime} n^{2}$ is odd'

Another Contraposition...

Lemma: For every n in N, n^{2} is even $\Longrightarrow n$ is even. $(P \Longrightarrow Q)$

Proof by contraposition: $(P \Longrightarrow Q) \equiv(\neg Q \Longrightarrow \neg P)$
$P=n^{2}$ is even.' $\neg P={ }^{\prime} n^{2}$ is odd'
$Q=$ ' n is even'

Another Contraposition...

Lemma: For every n in N, n^{2} is even $\Longrightarrow n$ is even. $(P \Longrightarrow Q)$

Proof by contraposition: $(P \Longrightarrow Q) \equiv(\neg Q \Longrightarrow \neg P)$
$P=n^{2}$ is even.' $\neg P={ }^{\prime} n^{2}$ is odd'
$Q=$ ' n is even' $\neg Q=$ ' n is odd'

Another Contraposition...

Lemma: For every n in N, n^{2} is even $\Longrightarrow n$ is even. $(P \Longrightarrow Q)$

Proof by contraposition: $(P \Longrightarrow Q) \equiv(\neg Q \Longrightarrow \neg P)$
$P={ }^{2} n^{2}$ is even.' $\neg P={ }^{\prime} n^{2}$ is odd'
$Q=$ ' n is even' $\neg Q=$ ' n is odd'
Prove $\neg Q \Longrightarrow \neg P: n$ is odd $\Longrightarrow n^{2}$ is odd.

Another Contraposition...

Lemma: For every n in N, n^{2} is even $\Longrightarrow n$ is even. $(P \Longrightarrow Q)$

Proof by contraposition: $(P \Longrightarrow Q) \equiv(\neg Q \Longrightarrow \neg P)$
$P=$ ' n^{2} is even.' $\neg P={ }^{\prime} n^{2}$ is odd'
$Q=$ ' n is even' $\neg Q=$ ' n is odd'
Prove $\neg Q \Longrightarrow \neg P: n$ is odd $\Longrightarrow n^{2}$ is odd.
$n=2 k+1$

Another Contraposition...

Lemma: For every n in N, n^{2} is even $\Longrightarrow n$ is even. $(P \Longrightarrow Q)$

Proof by contraposition: $(P \Longrightarrow Q) \equiv(\neg Q \Longrightarrow \neg P)$
$P=$ ' n^{2} is even.' $\neg P={ }^{\prime} n^{2}$ is odd'
$Q=$ ' n is even' $\neg Q=$ ' n is odd'
Prove $\neg Q \Longrightarrow \neg P: n$ is odd $\Longrightarrow n^{2}$ is odd.
$n=2 k+1$
$n^{2}=4 k^{2}+4 k+1=2\left(2 k^{2}+2 k\right)+1$.

Another Contraposition...

Lemma: For every n in N, n^{2} is even $\Longrightarrow n$ is even. $(P \Longrightarrow Q)$

Proof by contraposition: $(P \Longrightarrow Q) \equiv(\neg Q \Longrightarrow \neg P)$
$P=n^{2}$ is even.' $\neg P={ }^{\prime} n^{2}$ is odd'
$Q=$ ' n is even' $\neg Q=$ ' n is odd'
Prove $\neg Q \Longrightarrow \neg P: n$ is odd $\Longrightarrow n^{2}$ is odd.
$n=2 k+1$
$n^{2}=4 k^{2}+4 k+1=2\left(2 k^{2}+2 k\right)+1$.
$n^{2}=2 /+1$ where $/$ is a natural number..

Another Contraposition...

Lemma: For every n in N, n^{2} is even $\Longrightarrow n$ is even. $(P \Longrightarrow Q)$

Proof by contraposition: $(P \Longrightarrow Q) \equiv(\neg Q \Longrightarrow \neg P)$
$P=$ ' n^{2} is even.' $\neg P={ }^{\prime} n^{2}$ is odd'
$Q=$ ' n is even' $\neg Q=$ ' n is odd'
Prove $\neg Q \Longrightarrow \neg P: n$ is odd $\Longrightarrow n^{2}$ is odd.
$n=2 k+1$
$n^{2}=4 k^{2}+4 k+1=2\left(2 k^{2}+2 k\right)+1$.
$n^{2}=2 l+1$ where $/$ is a natural number..
... and n^{2} is odd!

Another Contraposition...

Lemma: For every n in N, n^{2} is even $\Longrightarrow n$ is even. $(P \Longrightarrow Q)$

Proof by contraposition: $(P \Longrightarrow Q) \equiv(\neg Q \Longrightarrow \neg P)$
$P=$ ' n^{2} is even.' $\neg P={ }^{\prime} n^{2}$ is odd'
$Q=$ ' n is even' $\neg Q=$ ' n is odd'
Prove $\neg Q \Longrightarrow \neg P: n$ is odd $\Longrightarrow n^{2}$ is odd.
$n=2 k+1$
$n^{2}=4 k^{2}+4 k+1=2\left(2 k^{2}+2 k\right)+1$.
$n^{2}=2 /+1$ where $/$ is a natural number..
\ldots and n^{2} is odd!
$\neg Q \Longrightarrow \neg P$

Another Contraposition...

Lemma: For every n in N, n^{2} is even $\Longrightarrow n$ is even. $(P \Longrightarrow Q)$

Proof by contraposition: $(P \Longrightarrow Q) \equiv(\neg Q \Longrightarrow \neg P)$
$P=$ ' n^{2} is even.' $\neg P={ }^{\prime} n^{2}$ is odd'
$Q=$ ' n is even' $\neg Q=$ ' n is odd'
Prove $\neg Q \Longrightarrow \neg P: n$ is odd $\Longrightarrow n^{2}$ is odd.
$n=2 k+1$
$n^{2}=4 k^{2}+4 k+1=2\left(2 k^{2}+2 k\right)+1$.
$n^{2}=2 l+1$ where $/$ is a natural number..
\ldots and n^{2} is odd!
$\neg Q \Longrightarrow \neg P$ so $P \Longrightarrow Q$ and \ldots

Another Contraposition...

Lemma: For every n in N, n^{2} is even $\Longrightarrow n$ is even. $(P \Longrightarrow Q)$

Proof by contraposition: $(P \Longrightarrow Q) \equiv(\neg Q \Longrightarrow \neg P)$
$P={ }^{2} n^{2}$ is even.' $\neg P={ }^{\prime} n^{2}$ is odd'
$Q=$ ' n is even' $\neg Q=$ ' n is odd'
Prove $\neg Q \Longrightarrow \neg P: n$ is odd $\Longrightarrow n^{2}$ is odd.
$n=2 k+1$
$n^{2}=4 k^{2}+4 k+1=2\left(2 k^{2}+2 k\right)+1$.
$n^{2}=2 l+1$ where $/$ is a natural number..
\ldots and n^{2} is odd!
$\neg Q \Longrightarrow \neg P$ so $P \Longrightarrow Q$ and \ldots

Proof by contradiction:form

Theorem: $\sqrt{2}$ is irrational.

Proof by contradiction:form

Theorem: $\sqrt{2}$ is irrational.
Must show:

Proof by contradiction:form

Theorem: $\sqrt{2}$ is irrational.
Must show: For every $a, b \in Z$,

Proof by contradiction:form

Theorem: $\sqrt{2}$ is irrational.
Must show: For every $a, b \in Z,\left(\frac{a}{b}\right)^{2} \neq 2$.

Proof by contradiction:form

Theorem: $\sqrt{2}$ is irrational.
Must show: For every $a, b \in Z,\left(\frac{a}{b}\right)^{2} \neq 2$.
A simple property (equality) should always "not" hold.

Proof by contradiction:form

Theorem: $\sqrt{2}$ is irrational.
Must show: For every $a, b \in Z,\left(\frac{a}{b}\right)^{2} \neq 2$.
A simple property (equality) should always "not" hold.
Proof by contradiction:

Proof by contradiction:form

Theorem: $\sqrt{2}$ is irrational.
Must show: For every $a, b \in Z,\left(\frac{a}{b}\right)^{2} \neq 2$.
A simple property (equality) should always "not" hold.
Proof by contradiction:
Theorem: P.

Proof by contradiction:form

Theorem: $\sqrt{2}$ is irrational.
Must show: For every $a, b \in Z,\left(\frac{a}{b}\right)^{2} \neq 2$.
A simple property (equality) should always "not" hold.
Proof by contradiction:
Theorem: P.
$\neg P$

Proof by contradiction:form

Theorem: $\sqrt{2}$ is irrational.
Must show: For every $a, b \in Z,\left(\frac{a}{b}\right)^{2} \neq 2$.
A simple property (equality) should always "not" hold.
Proof by contradiction:
Theorem: P.
$\neg P \Longrightarrow P_{1}$

Proof by contradiction:form

Theorem: $\sqrt{2}$ is irrational.
Must show: For every $a, b \in Z,\left(\frac{a}{b}\right)^{2} \neq 2$.
A simple property (equality) should always "not" hold.
Proof by contradiction:
Theorem: P.
$\neg P \Longrightarrow P_{1} \ldots$

Proof by contradiction:form

Theorem: $\sqrt{2}$ is irrational.
Must show: For every $a, b \in Z,\left(\frac{a}{b}\right)^{2} \neq 2$.
A simple property (equality) should always "not" hold.
Proof by contradiction:
Theorem: P.
$\neg P \Longrightarrow P_{1} \cdots \Longrightarrow R$

Proof by contradiction:form

Theorem: $\sqrt{2}$ is irrational.
Must show: For every $a, b \in Z,\left(\frac{a}{b}\right)^{2} \neq 2$.
A simple property (equality) should always "not" hold.
Proof by contradiction:
Theorem: P.
$\neg P \Longrightarrow P_{1} \cdots \Longrightarrow R$
$\neg P$

Proof by contradiction:form

Theorem: $\sqrt{2}$ is irrational.
Must show: For every $a, b \in Z,\left(\frac{a}{b}\right)^{2} \neq 2$.
A simple property (equality) should always "not" hold.
Proof by contradiction:
Theorem: P.
$\neg P \Longrightarrow P_{1} \cdots \Longrightarrow R$
$\neg P \Longrightarrow Q_{1}$

Proof by contradiction:form

Theorem: $\sqrt{2}$ is irrational.
Must show: For every $a, b \in Z,\left(\frac{a}{b}\right)^{2} \neq 2$.
A simple property (equality) should always "not" hold.
Proof by contradiction:
Theorem: P.
$\neg P \Longrightarrow P_{1} \cdots \Longrightarrow R$
$\neg P \Longrightarrow Q_{1} \cdots$

Proof by contradiction:form

Theorem: $\sqrt{2}$ is irrational.
Must show: For every $a, b \in Z,\left(\frac{a}{b}\right)^{2} \neq 2$.
A simple property (equality) should always "not" hold.
Proof by contradiction:
Theorem: P.
$\neg P \Longrightarrow P_{1} \cdots \Longrightarrow R$
$\neg P \Longrightarrow Q_{1} \cdots \Longrightarrow \neg R$

Proof by contradiction:form

Theorem: $\sqrt{2}$ is irrational.
Must show: For every $a, b \in Z,\left(\frac{a}{b}\right)^{2} \neq 2$.
A simple property (equality) should always "not" hold.
Proof by contradiction:
Theorem: P.
$\neg P \Longrightarrow P_{1} \cdots \Longrightarrow R$
$\neg P \Longrightarrow Q_{1} \cdots \Longrightarrow \neg R$
$\neg P \Longrightarrow R \wedge \neg R$

Proof by contradiction:form

Theorem: $\sqrt{2}$ is irrational.
Must show: For every $a, b \in Z,\left(\frac{a}{b}\right)^{2} \neq 2$.
A simple property (equality) should always "not" hold.
Proof by contradiction:
Theorem: P.
$\neg P \Longrightarrow P_{1} \cdots \Longrightarrow R$
$\neg P \Longrightarrow Q_{1} \cdots \Longrightarrow \neg R$
$\neg P \Longrightarrow R \wedge \neg R \equiv$ False

Proof by contradiction:form

Theorem: $\sqrt{2}$ is irrational.
Must show: For every $a, b \in Z,\left(\frac{a}{b}\right)^{2} \neq 2$.
A simple property (equality) should always "not" hold.
Proof by contradiction:
Theorem: P.
$\neg P \Longrightarrow P_{1} \cdots \Longrightarrow R$
$\neg P \Longrightarrow Q_{1} \cdots \Longrightarrow \neg R$
$\neg P \Longrightarrow R \wedge \neg R \equiv$ False
or $\neg P \Longrightarrow$ False

Proof by contradiction:form

Theorem: $\sqrt{2}$ is irrational.
Must show: For every $a, b \in Z,\left(\frac{a}{b}\right)^{2} \neq 2$.
A simple property (equality) should always "not" hold.
Proof by contradiction:
Theorem: P.
$\neg P \Longrightarrow P_{1} \cdots \Longrightarrow R$
$\neg P \Longrightarrow Q_{1} \cdots \Longrightarrow \neg R$
$\neg P \Longrightarrow R \wedge \neg R \equiv$ False
or $\neg P \Longrightarrow$ False
Contrapositive of $\neg P \Longrightarrow$ False is True $\Longrightarrow P$.

Proof by contradiction:form

Theorem: $\sqrt{2}$ is irrational.
Must show: For every $a, b \in Z,\left(\frac{a}{b}\right)^{2} \neq 2$.
A simple property (equality) should always "not" hold.
Proof by contradiction:
Theorem: P.
$\neg P \Longrightarrow P_{1} \cdots \Longrightarrow R$
$\neg P \Longrightarrow Q_{1} \cdots \Longrightarrow \neg R$
$\neg P \Longrightarrow R \wedge \neg R \equiv$ False
or $\neg P \Longrightarrow$ False
Contrapositive of $\neg P \Longrightarrow$ False is True $\Longrightarrow P$.
Theorem P is true.

Proof by contradiction:form

Theorem: $\sqrt{2}$ is irrational.
Must show: For every $a, b \in Z,\left(\frac{a}{b}\right)^{2} \neq 2$.
A simple property (equality) should always "not" hold.
Proof by contradiction:
Theorem: P.
$\neg P \Longrightarrow P_{1} \cdots \Longrightarrow R$
$\neg P \Longrightarrow Q_{1} \cdots \Longrightarrow \neg R$
$\neg P \Longrightarrow R \wedge \neg R \equiv$ False
or $\neg P \Longrightarrow$ False
Contrapositive of $\neg P \Longrightarrow$ False is True $\Longrightarrow P$.
Theorem P is true. And proven.

Contradiction

Theorem: $\sqrt{2}$ is irrational.

Contradiction

Theorem: $\sqrt{2}$ is irrational.
Assume $\neg P$:

Contradiction

Theorem: $\sqrt{2}$ is irrational.
Assume $\neg P: \sqrt{2}=a / b$ for $a, b \in Z$.

Contradiction

Theorem: $\sqrt{2}$ is irrational.
Assume $\neg P: \sqrt{2}=a / b$ for $a, b \in Z$.
Reduced form: a and b have no common factors.

Contradiction

Theorem: $\sqrt{2}$ is irrational.
Assume $\neg P: \sqrt{2}=a / b$ for $a, b \in Z$.
Reduced form: a and b have no common factors.

$$
\sqrt{2} b=a
$$

Contradiction

Theorem: $\sqrt{2}$ is irrational.
Assume $\neg P: \sqrt{2}=a / b$ for $a, b \in Z$.
Reduced form: a and b have no common factors.

$$
\sqrt{2} b=a
$$

$$
2 b^{2}=a^{2}
$$

Contradiction

Theorem: $\sqrt{2}$ is irrational.
Assume $\neg P: \sqrt{2}=a / b$ for $a, b \in Z$.
Reduced form: a and b have no common factors.

$$
\sqrt{2} b=a
$$

$$
2 b^{2}=a^{2}
$$

a^{2} is even $\Longrightarrow a$ is even.

Contradiction

Theorem: $\sqrt{2}$ is irrational.
Assume $\neg P: \sqrt{2}=a / b$ for $a, b \in Z$.
Reduced form: a and b have no common factors.

$$
\sqrt{2} b=a
$$

$$
2 b^{2}=a^{2}
$$

a^{2} is even $\Longrightarrow a$ is even.
$a=2 k$ for some integer k

Contradiction

Theorem: $\sqrt{2}$ is irrational.
Assume $\neg P: \sqrt{2}=a / b$ for $a, b \in Z$.
Reduced form: a and b have no common factors.

$$
\begin{gathered}
\sqrt{2} b=a \\
2 b^{2}=a^{2}=4 k^{2}
\end{gathered}
$$

a^{2} is even $\Longrightarrow a$ is even.
$a=2 k$ for some integer k

Contradiction

Theorem: $\sqrt{2}$ is irrational.
Assume $\neg P: \sqrt{2}=a / b$ for $a, b \in Z$.
Reduced form: a and b have no common factors.

$$
\begin{gathered}
\sqrt{2} b=a \\
2 b^{2}=a^{2}=4 k^{2}
\end{gathered}
$$

a^{2} is even $\Longrightarrow a$ is even.
$a=2 k$ for some integer k

$$
b^{2}=2 k^{2}
$$

Contradiction

Theorem: $\sqrt{2}$ is irrational.
Assume $\neg P: \sqrt{2}=a / b$ for $a, b \in Z$.
Reduced form: a and b have no common factors.

$$
\begin{gathered}
\sqrt{2} b=a \\
2 b^{2}=a^{2}=4 k^{2}
\end{gathered}
$$

a^{2} is even $\Longrightarrow a$ is even.
$a=2 k$ for some integer k

$$
b^{2}=2 k^{2}
$$

b^{2} is even $\Longrightarrow b$ is even.

Contradiction

Theorem: $\sqrt{2}$ is irrational.
Assume $\neg P: \sqrt{2}=a / b$ for $a, b \in Z$.
Reduced form: a and b have no common factors.

$$
\begin{gathered}
\sqrt{2} b=a \\
2 b^{2}=a^{2}=4 k^{2}
\end{gathered}
$$

a^{2} is even $\Longrightarrow a$ is even.
$a=2 k$ for some integer k

$$
b^{2}=2 k^{2}
$$

b^{2} is even $\Longrightarrow b$ is even.
a and b have a common factor.

Contradiction

Theorem: $\sqrt{2}$ is irrational.
Assume $\neg P: \sqrt{2}=a / b$ for $a, b \in Z$.
Reduced form: a and b have no common factors.

$$
\begin{gathered}
\sqrt{2} b=a \\
2 b^{2}=a^{2}=4 k^{2}
\end{gathered}
$$

a^{2} is even $\Longrightarrow a$ is even.
$a=2 k$ for some integer k

$$
b^{2}=2 k^{2}
$$

b^{2} is even $\Longrightarrow b$ is even.
a and b have a common factor. Contradiction.

Contradiction

Theorem: $\sqrt{2}$ is irrational.
Assume $\neg P: \sqrt{2}=a / b$ for $a, b \in Z$.
Reduced form: a and b have no common factors.

$$
\begin{gathered}
\sqrt{2} b=a \\
2 b^{2}=a^{2}=4 k^{2}
\end{gathered}
$$

a^{2} is even $\Longrightarrow a$ is even.
$a=2 k$ for some integer k

$$
b^{2}=2 k^{2}
$$

b^{2} is even $\Longrightarrow b$ is even.
a and b have a common factor. Contradiction.

Proof by contradiction: example

Theorem: There are infinitely many primes.

Proof by contradiction: example

Theorem: There are infinitely many primes.

Proof:

Proof by contradiction: example

Theorem: There are infinitely many primes.

Proof:

- Assume finitely many primes: p_{1}, \ldots, p_{k}.

Proof by contradiction: example

Theorem: There are infinitely many primes.

Proof:

- Assume finitely many primes: p_{1}, \ldots, p_{k}.
- Consider number

Proof by contradiction: example

Theorem: There are infinitely many primes.

Proof:

- Assume finitely many primes: p_{1}, \ldots, p_{k}.
- Consider number

$$
q=\left(p_{1} \times p_{2} \times \cdots p_{k}\right)+1
$$

Proof by contradiction: example

Theorem: There are infinitely many primes.

Proof:

- Assume finitely many primes: p_{1}, \ldots, p_{k}.
- Consider number

$$
q=\left(p_{1} \times p_{2} \times \cdots p_{k}\right)+1
$$

- q cannot be one of the primes as it is larger than any p_{i}.

Proof by contradiction: example

Theorem: There are infinitely many primes.
Proof:

- Assume finitely many primes: p_{1}, \ldots, p_{k}.
- Consider number

$$
q=\left(p_{1} \times p_{2} \times \cdots p_{k}\right)+1
$$

- q cannot be one of the primes as it is larger than any p_{i}.
- q has prime divisor p (" $p>1$ " $=\mathrm{R}$) which is one of p_{i}.

Proof by contradiction: example

Theorem: There are infinitely many primes.
Proof:

- Assume finitely many primes: p_{1}, \ldots, p_{k}.
- Consider number

$$
q=\left(p_{1} \times p_{2} \times \cdots p_{k}\right)+1
$$

- q cannot be one of the primes as it is larger than any p_{i}.
- q has prime divisor p (" $p>1$ " $=\mathrm{R}$) which is one of p_{i}.
- p divides both $x=p_{1} \cdot p_{2} \cdots p_{k}$ and q,

Proof by contradiction: example

Theorem: There are infinitely many primes.
Proof:

- Assume finitely many primes: p_{1}, \ldots, p_{k}.
- Consider number

$$
q=\left(p_{1} \times p_{2} \times \cdots p_{k}\right)+1
$$

- q cannot be one of the primes as it is larger than any p_{i}.
- q has prime divisor p (" $p>1$ " $=\mathrm{R}$) which is one of p_{i}.
- p divides both $x=p_{1} \cdot p_{2} \cdots p_{k}$ and q, and divides $q-x$,

Proof by contradiction: example

Theorem: There are infinitely many primes.
Proof:

- Assume finitely many primes: p_{1}, \ldots, p_{k}.
- Consider number

$$
q=\left(p_{1} \times p_{2} \times \cdots p_{k}\right)+1
$$

- q cannot be one of the primes as it is larger than any p_{i}.
- q has prime divisor p (" $p>1$ " $=\mathrm{R}$) which is one of p_{i}.
- p divides both $x=p_{1} \cdot p_{2} \cdots p_{k}$ and q, and divides $q-x$,
- $\Longrightarrow p \mid(q-x)$

Proof by contradiction: example

Theorem: There are infinitely many primes.
Proof:

- Assume finitely many primes: p_{1}, \ldots, p_{k}.
- Consider number

$$
q=\left(p_{1} \times p_{2} \times \cdots p_{k}\right)+1
$$

- q cannot be one of the primes as it is larger than any p_{i}.
- q has prime divisor p (" $p>1$ " $=\mathrm{R}$) which is one of p_{i}.
- p divides both $x=p_{1} \cdot p_{2} \cdots p_{k}$ and q, and divides $q-x$,
- $\Longrightarrow p \mid(q-x) \Longrightarrow p \leq(q-x)$

Proof by contradiction: example

Theorem: There are infinitely many primes.
Proof:

- Assume finitely many primes: p_{1}, \ldots, p_{k}.
- Consider number

$$
q=\left(p_{1} \times p_{2} \times \cdots p_{k}\right)+1
$$

- q cannot be one of the primes as it is larger than any p_{i}.
- q has prime divisor p (" $p>1$ " $=\mathrm{R}$) which is one of p_{i}.
- p divides both $x=p_{1} \cdot p_{2} \cdots p_{k}$ and q, and divides $q-x$,
$\Rightarrow \Longrightarrow p \mid(q-x) \Longrightarrow p \leq(q-x)=1$.

Proof by contradiction: example

Theorem: There are infinitely many primes.
Proof:

- Assume finitely many primes: p_{1}, \ldots, p_{k}.
- Consider number

$$
q=\left(p_{1} \times p_{2} \times \cdots p_{k}\right)+1
$$

- q cannot be one of the primes as it is larger than any p_{i}.
- q has prime divisor p (" $p>1$ " $=\mathrm{R}$) which is one of p_{i}.
- p divides both $x=p_{1} \cdot p_{2} \cdots p_{k}$ and q, and divides $q-x$,
$\Rightarrow \Longrightarrow p \mid(q-x) \Longrightarrow p \leq(q-x)=1$.
- so $p \leq 1$.

Proof by contradiction: example

Theorem: There are infinitely many primes.
Proof:

- Assume finitely many primes: p_{1}, \ldots, p_{k}.
- Consider number

$$
q=\left(p_{1} \times p_{2} \times \cdots p_{k}\right)+1
$$

- q cannot be one of the primes as it is larger than any p_{i}.
- q has prime divisor p (" $p>1$ " $=\mathrm{R}$) which is one of p_{i}.
- p divides both $x=p_{1} \cdot p_{2} \cdots p_{k}$ and q, and divides $q-x$,
$\Rightarrow \Longrightarrow p \mid(q-x) \Longrightarrow p \leq(q-x)=1$.
- so $p \leq 1$. (Contradicts R.)

Proof by contradiction: example

Theorem: There are infinitely many primes.
Proof:

- Assume finitely many primes: p_{1}, \ldots, p_{k}.
- Consider number

$$
q=\left(p_{1} \times p_{2} \times \cdots p_{k}\right)+1
$$

- q cannot be one of the primes as it is larger than any p_{i}.
- q has prime divisor p (" $p>1$ " $=\mathrm{R}$) which is one of p_{i}.
- p divides both $x=p_{1} \cdot p_{2} \cdots p_{k}$ and q, and divides $q-x$,
$\Rightarrow \Longrightarrow p \mid(q-x) \Longrightarrow p \leq(q-x)=1$.
- so $p \leq 1$. (Contradicts R.)

The original assumption that "the theorem is false" is false, thus the theorem is proven.

Proof by contradiction: example

Theorem: There are infinitely many primes.
Proof:

- Assume finitely many primes: p_{1}, \ldots, p_{k}.
- Consider number

$$
q=\left(p_{1} \times p_{2} \times \cdots p_{k}\right)+1
$$

- q cannot be one of the primes as it is larger than any p_{i}.
- q has prime divisor p (" $p>1$ " $=\mathrm{R}$) which is one of p_{i}.
- p divides both $x=p_{1} \cdot p_{2} \cdots p_{k}$ and q, and divides $q-x$,
$\Rightarrow \Longrightarrow p \mid(q-x) \Longrightarrow p \leq(q-x)=1$.
- so $p \leq 1$. (Contradicts R.)

The original assumption that "the theorem is false" is false, thus the theorem is proven.

Product of first k primes..

Did we prove?

- "The product of the first k primes plus 1 is prime."

Product of first k primes..

Did we prove?

- "The product of the first k primes plus 1 is prime."
- No.

Product of first k primes..

Did we prove?

- "The product of the first k primes plus 1 is prime."
- No.
- The chain of reasoning started with a false statement.

Product of first k primes..

Did we prove?

- "The product of the first k primes plus 1 is prime."
- No.
- The chain of reasoning started with a false statement.

Consider example..

Product of first k primes..

Did we prove?

- "The product of the first k primes plus 1 is prime."
- No.
- The chain of reasoning started with a false statement.

Consider example..

- $2 \times 3 \times 5 \times 7 \times 11 \times 13+1=30031=59 \times 509$

Product of first k primes..

Did we prove?

- "The product of the first k primes plus 1 is prime."
- No.
- The chain of reasoning started with a false statement.

Consider example..

- $2 \times 3 \times 5 \times 7 \times 11 \times 13+1=30031=59 \times 509$
- There is a prime in between 13 and $q=30031$ that divides q.

Product of first k primes..

Did we prove?

- "The product of the first k primes plus 1 is prime."
- No.
- The chain of reasoning started with a false statement.

Consider example..

- $2 \times 3 \times 5 \times 7 \times 11 \times 13+1=30031=59 \times 509$
- There is a prime in between 13 and $q=30031$ that divides q.
- Proof assumed no primes in between p_{k} and q.

Poll: Odds and evens.
x is even, y is odd.

Poll: Odds and evens.

x is even, y is odd.
Even numbers are divisible by 2.

Poll: Odds and evens.

x is even, y is odd.
Even numbers are divisible by 2.
Which are even?

Poll: Odds and evens.

x is even, y is odd.
Even numbers are divisible by 2 .
Which are even?
(A) x^{3}
(B) y^{3}
(C) $x+5 x$
(D) $x y$
(E) $x y^{5}$
(F) $x+y$

Poll: Odds and evens.

x is even, y is odd.
Even numbers are divisible by 2 .
Which are even?
(A) x^{3}
(B) y^{3}
(C) $x+5 x$
(D) $x y$
(E) $x y^{5}$
(F) $x+y$
$\mathrm{A}, \mathrm{D}, \mathrm{E}$ all contain a factor of 2 .

Poll: Odds and evens.

x is even, y is odd.
Even numbers are divisible by 2.
Which are even?
(A) x^{3}
(B) y^{3}
(C) $x+5 x$
(D) $x y$
(E) $x y^{5}$
(F) $x+y$

A, D, E all contain a factor of 2 .
$x=2 k$, and $x^{3}=8 k=2(4 k)$ and is even.

Poll: Odds and evens.

x is even, y is odd.
Even numbers are divisible by 2.
Which are even?
(A) x^{3}
(B) y^{3}
(C) $x+5 x$
(D) $x y$
(E) $x y^{5}$
(F) $x+y$

A, D, E all contain a factor of 2 .
$x=2 k$, and $x^{3}=8 k=2(4 k)$ and is even.
y^{3}. Odd?

Poll: Odds and evens.

x is even, y is odd.
Even numbers are divisible by 2.
Which are even?
(A) x^{3}
(B) y^{3}
(C) $x+5 x$
(D) $x y$
(E) $x y^{5}$
(F) $x+y$

A, D, E all contain a factor of 2 .
$x=2 k$, and $x^{3}=8 k=2(4 k)$ and is even.
y^{3}. Odd?
$y=(2 k+1) \cdot y^{3}=8 k^{3}+24 k^{2}+24 k+1=2\left(4 k^{3}+12 k^{2}+12 k\right)+1$.

Poll: Odds and evens.

x is even, y is odd.
Even numbers are divisible by 2.
Which are even?
(A) x^{3}
(B) y^{3}
(C) $x+5 x$
(D) $x y$
(E) $x y^{5}$
(F) $x+y$

A, D, E all contain a factor of 2 .
$x=2 k$, and $x^{3}=8 k=2(4 k)$ and is even.
y^{3}. Odd?
$y=(2 k+1) \cdot y^{3}=8 k^{3}+24 k^{2}+24 k+1=2\left(4 k^{3}+12 k^{2}+12 k\right)+1$.
Odd times an odd?

Poll: Odds and evens.

x is even, y is odd.
Even numbers are divisible by 2.
Which are even?
(A) x^{3}
(B) y^{3}
(C) $x+5 x$
(D) $x y$
(E) $x y^{5}$
(F) $x+y$

A, D, E all contain a factor of 2 .
$x=2 k$, and $x^{3}=8 k=2(4 k)$ and is even.
y^{3}. Odd?
$y=(2 k+1) \cdot y^{3}=8 k^{3}+24 k^{2}+24 k+1=2\left(4 k^{3}+12 k^{2}+12 k\right)+1$.
Odd times an odd? Odd.

Poll: Odds and evens.

x is even, y is odd.
Even numbers are divisible by 2.
Which are even?
(A) x^{3}
(B) y^{3}
(C) $x+5 x$
(D) $x y$
(E) $x y^{5}$
(F) $x+y$

A, D, E all contain a factor of 2 .
$x=2 k$, and $x^{3}=8 k=2(4 k)$ and is even.
y^{3}. Odd?
$y=(2 k+1) \cdot y^{3}=8 k^{3}+24 k^{2}+24 k+1=2\left(4 k^{3}+12 k^{2}+12 k\right)+1$.
Odd times an odd? Odd.
Any power of an odd number?

Poll: Odds and evens.

x is even, y is odd.
Even numbers are divisible by 2.
Which are even?
(A) x^{3}
(B) y^{3}
(C) $x+5 x$
(D) $x y$
(E) $x y^{5}$
(F) $x+y$

A, D, E all contain a factor of 2 .
$x=2 k$, and $x^{3}=8 k=2(4 k)$ and is even.
y^{3}. Odd?
$y=(2 k+1) \cdot y^{3}=8 k^{3}+24 k^{2}+24 k+1=2\left(4 k^{3}+12 k^{2}+12 k\right)+1$.
Odd times an odd? Odd.
Any power of an odd number? Odd.
Idea: $(2 k+1)^{n}$ has terms
(a) with the last term being 1

Poll: Odds and evens.

x is even, y is odd.
Even numbers are divisible by 2.
Which are even?
(A) x^{3}
(B) y^{3}
(C) $x+5 x$
(D) $x y$
(E) $x y^{5}$
(F) $x+y$

A, D, E all contain a factor of 2 .
$x=2 k$, and $x^{3}=8 k=2(4 k)$ and is even.
y^{3}. Odd?
$y=(2 k+1) \cdot y^{3}=8 k^{3}+24 k^{2}+24 k+1=2\left(4 k^{3}+12 k^{2}+12 k\right)+1$.
Odd times an odd? Odd.
Any power of an odd number? Odd.
Idea: $(2 k+1)^{n}$ has terms
(a) with the last term being 1

Proof by cases.

Theorem: $x^{5}-x+1=0$ has no solution in the rationals.

Proof by cases.

Theorem: $x^{5}-x+1=0$ has no solution in the rationals.
Proof: First a lemma...

Proof by cases.

Theorem: $x^{5}-x+1=0$ has no solution in the rationals.
Proof: First a lemma...
Lemma: If x is a solution to $x^{5}-x+1=0$ and $x=a / b$ for $a, b \in Z$, then both a and b are even.

Proof by cases.

Theorem: $x^{5}-x+1=0$ has no solution in the rationals.
Proof: First a lemma...
Lemma: If x is a solution to $x^{5}-x+1=0$ and $x=a / b$ for $a, b \in Z$, then both a and b are even.
Reduced form $\frac{a}{b}$: a and b can't both be even!

Proof by cases.

Theorem: $x^{5}-x+1=0$ has no solution in the rationals.
Proof: First a lemma...
Lemma: If x is a solution to $x^{5}-x+1=0$ and $x=a / b$ for $a, b \in Z$, then both a and b are even.
Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma

Proof by cases.

Theorem: $x^{5}-x+1=0$ has no solution in the rationals.
Proof: First a lemma...
Lemma: If x is a solution to $x^{5}-x+1=0$ and $x=a / b$ for $a, b \in Z$, then both a and b are even.
Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \Longrightarrow no rational solution.

Proof by cases.

Theorem: $x^{5}-x+1=0$ has no solution in the rationals.
Proof: First a lemma...
Lemma: If x is a solution to $x^{5}-x+1=0$ and $x=a / b$ for $a, b \in Z$, then both a and b are even.
Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \Longrightarrow no rational solution.
Proof of lemma: Assume a solution of the form a / b.

Proof by cases.

Theorem: $x^{5}-x+1=0$ has no solution in the rationals.
Proof: First a lemma...
Lemma: If x is a solution to $x^{5}-x+1=0$ and $x=a / b$ for $a, b \in Z$, then both a and b are even.
Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \Longrightarrow no rational solution.
Proof of lemma: Assume a solution of the form a / b.

$$
\left(\frac{a}{b}\right)^{5}-\frac{a}{b}+1=0
$$

Proof by cases.

Theorem: $x^{5}-x+1=0$ has no solution in the rationals.
Proof: First a lemma...
Lemma: If x is a solution to $x^{5}-x+1=0$ and $x=a / b$ for $a, b \in Z$, then both a and b are even.
Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \Longrightarrow no rational solution.

Proof of lemma: Assume a solution of the form a / b.

$$
\left(\frac{a}{b}\right)^{5}-\frac{a}{b}+1=0
$$

Multiply by b^{5},

$$
a^{5}-a b^{4}+b^{5}=0
$$

Proof by cases.

Theorem: $x^{5}-x+1=0$ has no solution in the rationals.
Proof: First a lemma...
Lemma: If x is a solution to $x^{5}-x+1=0$ and $x=a / b$ for $a, b \in Z$, then both a and b are even.
Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \Longrightarrow no rational solution.

Proof of lemma: Assume a solution of the form a / b.

$$
\left(\frac{a}{b}\right)^{5}-\frac{a}{b}+1=0
$$

Multiply by b^{5},

$$
a^{5}-a b^{4}+b^{5}=0
$$

Case 1: a odd, b odd: odd - odd +odd = even.

Proof by cases.

Theorem: $x^{5}-x+1=0$ has no solution in the rationals.
Proof: First a lemma...
Lemma: If x is a solution to $x^{5}-x+1=0$ and $x=a / b$ for $a, b \in Z$, then both a and b are even.
Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \Longrightarrow no rational solution.

Proof of lemma: Assume a solution of the form a / b.

$$
\left(\frac{a}{b}\right)^{5}-\frac{a}{b}+1=0
$$

Multiply by b^{5},

$$
a^{5}-a b^{4}+b^{5}=0
$$

Case 1: a odd, b odd: odd - odd +odd = even. Not possible.

Proof by cases.

Theorem: $x^{5}-x+1=0$ has no solution in the rationals.
Proof: First a lemma...
Lemma: If x is a solution to $x^{5}-x+1=0$ and $x=a / b$ for $a, b \in Z$, then both a and b are even.
Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \Longrightarrow no rational solution.

Proof of lemma: Assume a solution of the form a / b.

$$
\left(\frac{a}{b}\right)^{5}-\frac{a}{b}+1=0
$$

Multiply by b^{5},

$$
a^{5}-a b^{4}+b^{5}=0
$$

Case 1: a odd, b odd: odd - odd +odd = even. Not possible. Case 2: a even, b odd: even - even +odd = even.

Proof by cases.

Theorem: $x^{5}-x+1=0$ has no solution in the rationals.
Proof: First a lemma...
Lemma: If x is a solution to $x^{5}-x+1=0$ and $x=a / b$ for $a, b \in Z$, then both a and b are even.
Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \Longrightarrow no rational solution.

Proof of lemma: Assume a solution of the form a / b.

$$
\left(\frac{a}{b}\right)^{5}-\frac{a}{b}+1=0
$$

Multiply by b^{5},

$$
a^{5}-a b^{4}+b^{5}=0
$$

Case 1: a odd, b odd: odd - odd +odd = even. Not possible. Case 2: a even, b odd: even - even +odd = even. Not possible.

Proof by cases.

Theorem: $x^{5}-x+1=0$ has no solution in the rationals.
Proof: First a lemma...
Lemma: If x is a solution to $x^{5}-x+1=0$ and $x=a / b$ for $a, b \in Z$, then both a and b are even.
Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \Longrightarrow no rational solution.

Proof of lemma: Assume a solution of the form a / b.

$$
\left(\frac{a}{b}\right)^{5}-\frac{a}{b}+1=0
$$

Multiply by b^{5},

$$
a^{5}-a b^{4}+b^{5}=0
$$

Case 1: a odd, b odd: odd - odd +odd = even. Not possible. Case 2: a even, b odd: even - even +odd = even. Not possible.
Case 3: a odd, b even: odd - even +even = even.

Proof by cases.

Theorem: $x^{5}-x+1=0$ has no solution in the rationals.
Proof: First a lemma...
Lemma: If x is a solution to $x^{5}-x+1=0$ and $x=a / b$ for $a, b \in Z$, then both a and b are even.
Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \Longrightarrow no rational solution.

Proof of lemma: Assume a solution of the form a / b.

$$
\left(\frac{a}{b}\right)^{5}-\frac{a}{b}+1=0
$$

Multiply by b^{5},

$$
a^{5}-a b^{4}+b^{5}=0
$$

Case 1: a odd, b odd: odd - odd +odd = even. Not possible. Case 2: a even, b odd: even - even +odd = even. Not possible. Case 3: a odd, b even: odd - even +even = even. Not possible.

Proof by cases.

Theorem: $x^{5}-x+1=0$ has no solution in the rationals.
Proof: First a lemma...
Lemma: If x is a solution to $x^{5}-x+1=0$ and $x=a / b$ for $a, b \in Z$, then both a and b are even.
Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \Longrightarrow no rational solution.

Proof of lemma: Assume a solution of the form a / b.

$$
\left(\frac{a}{b}\right)^{5}-\frac{a}{b}+1=0
$$

Multiply by b^{5},

$$
a^{5}-a b^{4}+b^{5}=0
$$

Case 1: a odd, b odd: odd - odd +odd = even. Not possible. Case 2: a even, b odd: even - even +odd = even. Not possible. Case 3: a odd, b even: odd - even +even = even. Not possible.
Case 4: a even, b even: even - even +even = even.

Proof by cases.

Theorem: $x^{5}-x+1=0$ has no solution in the rationals.
Proof: First a lemma...
Lemma: If x is a solution to $x^{5}-x+1=0$ and $x=a / b$ for $a, b \in Z$, then both a and b are even.
Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \Longrightarrow no rational solution.

Proof of lemma: Assume a solution of the form a / b.

$$
\left(\frac{a}{b}\right)^{5}-\frac{a}{b}+1=0
$$

Multiply by b^{5},

$$
a^{5}-a b^{4}+b^{5}=0
$$

Case 1: a odd, b odd: odd - odd +odd = even. Not possible. Case 2: a even, b odd: even - even +odd = even. Not possible. Case 3: a odd, b even: odd - even +even = even. Not possible. Case 4: a even, b even: even - even +even = even. Possible.

Proof by cases.

Theorem: $x^{5}-x+1=0$ has no solution in the rationals.
Proof: First a lemma...
Lemma: If x is a solution to $x^{5}-x+1=0$ and $x=a / b$ for $a, b \in Z$, then both a and b are even.
Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \Longrightarrow no rational solution.

Proof of lemma: Assume a solution of the form a / b.

$$
\left(\frac{a}{b}\right)^{5}-\frac{a}{b}+1=0
$$

Multiply by b^{5},

$$
a^{5}-a b^{4}+b^{5}=0
$$

Case 1: a odd, b odd: odd - odd +odd = even. Not possible. Case 2: a even, b odd: even - even +odd = even. Not possible. Case 3: a odd, b even: odd - even +even = even. Not possible. Case 4: a even, b even: even - even +even = even. Possible.
The fourth case is the only one possible,

Proof by cases.

Theorem: $x^{5}-x+1=0$ has no solution in the rationals.
Proof: First a lemma...
Lemma: If x is a solution to $x^{5}-x+1=0$ and $x=a / b$ for $a, b \in Z$, then both a and b are even.
Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \Longrightarrow no rational solution.

Proof of lemma: Assume a solution of the form a / b.

$$
\left(\frac{a}{b}\right)^{5}-\frac{a}{b}+1=0
$$

Multiply by b^{5},

$$
a^{5}-a b^{4}+b^{5}=0
$$

Case 1: a odd, b odd: odd - odd +odd = even. Not possible. Case 2: a even, b odd: even - even +odd = even. Not possible. Case 3: a odd, b even: odd - even +even = even. Not possible. Case 4: a even, b even: even - even +even = even. Possible.

The fourth case is the only one possible, so the lemma follows.

Proof by cases.

Theorem: There exist irrational x and y such that x^{y} is rational.

Proof by cases.

Theorem: There exist irrational x and y such that x^{y} is rational.
Let $x=y=\sqrt{2}$.

Proof by cases.

Theorem: There exist irrational x and y such that x^{y} is rational.
Let $x=y=\sqrt{2}$.
Case 1: $x^{y}=\sqrt{2}^{\sqrt{2}}$ is rational.

Proof by cases.

Theorem: There exist irrational x and y such that x^{y} is rational.
Let $x=y=\sqrt{2}$.
Case 1: $x^{y}=\sqrt{2}^{\sqrt{2}}$ is rational. Done!

Proof by cases.

Theorem: There exist irrational x and y such that x^{y} is rational.
Let $x=y=\sqrt{2}$.
Case 1: $x^{y}=\sqrt{2}^{\sqrt{2}}$ is rational. Done!
Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

Proof by cases.

Theorem: There exist irrational x and y such that x^{y} is rational.
Let $x=y=\sqrt{2}$.
Case 1: $x^{y}=\sqrt{2}^{\sqrt{2}}$ is rational. Done!
Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

- New values: $x=\sqrt{2}^{\sqrt{2}}, y=\sqrt{2}$.

Proof by cases.

Theorem: There exist irrational x and y such that x^{y} is rational.
Let $x=y=\sqrt{2}$.
Case 1: $x^{y}=\sqrt{2}^{\sqrt{2}}$ is rational. Done!
Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

- New values: $x=\sqrt{2}^{\sqrt{2}}, y=\sqrt{2}$.

$$
x^{y}=
$$

Proof by cases.

Theorem: There exist irrational x and y such that x^{y} is rational.
Let $x=y=\sqrt{2}$.
Case 1: $x^{y}=\sqrt{2}^{\sqrt{2}}$ is rational. Done!
Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

- New values: $x=\sqrt{2}^{\sqrt{2}}, y=\sqrt{2}$.

$$
x^{y}=\left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}}
$$

Proof by cases.

Theorem: There exist irrational x and y such that x^{y} is rational.
Let $x=y=\sqrt{2}$.
Case 1: $x^{y}=\sqrt{2}^{\sqrt{2}}$ is rational. Done!
Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

- New values: $x=\sqrt{2}^{\sqrt{2}}, y=\sqrt{2}$.

$$
x^{y}=\left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}}=\sqrt{2}^{\sqrt{2} * \sqrt{2}}
$$

Proof by cases.

Theorem: There exist irrational x and y such that x^{y} is rational.
Let $x=y=\sqrt{2}$.
Case 1: $x^{y}=\sqrt{2}^{\sqrt{2}}$ is rational. Done!
Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

- New values: $x=\sqrt{2}^{\sqrt{2}}, y=\sqrt{2}$.

$$
x^{y}=\left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}}=\sqrt{2}^{\sqrt{2} * \sqrt{2}}=\sqrt{2}^{2}
$$

Proof by cases.

Theorem: There exist irrational x and y such that x^{y} is rational.
Let $x=y=\sqrt{2}$.
Case 1: $x^{y}=\sqrt{2}^{\sqrt{2}}$ is rational. Done!
Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

- New values: $x=\sqrt{2}^{\sqrt{2}}, y=\sqrt{2}$.

$$
x^{y}=\left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}}=\sqrt{2}^{\sqrt{2} * \sqrt{2}}=\sqrt{2}^{2}=2
$$

Proof by cases.

Theorem: There exist irrational x and y such that x^{y} is rational.
Let $x=y=\sqrt{2}$.
Case 1: $x^{y}=\sqrt{2}^{\sqrt{2}}$ is rational. Done!
Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

- New values: $x=\sqrt{2}^{\sqrt{2}}, y=\sqrt{2}$.

$$
x^{y}=\left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}}=\sqrt{2}^{\sqrt{2} * \sqrt{2}}=\sqrt{2}^{2}=2
$$

Thus, we have irrational x and y with a rational x^{y} (i.e., 2).

Proof by cases.

Theorem: There exist irrational x and y such that x^{y} is rational.
Let $x=y=\sqrt{2}$.
Case 1: $x^{y}=\sqrt{2}^{\sqrt{2}}$ is rational. Done!
Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

- New values: $x=\sqrt{2}^{\sqrt{2}}, y=\sqrt{2}$.

$$
x^{y}=\left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}}=\sqrt{2}^{\sqrt{2} * \sqrt{2}}=\sqrt{2}^{2}=2
$$

Thus, we have irrational x and y with a rational x^{y} (i.e., 2).
One of the cases is true so theorem holds.

Proof by cases.

Theorem: There exist irrational x and y such that x^{y} is rational.
Let $x=y=\sqrt{2}$.
Case 1: $x^{y}=\sqrt{2}^{\sqrt{2}}$ is rational. Done!
Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

- New values: $x=\sqrt{2}^{\sqrt{2}}, y=\sqrt{2}$.

$$
x^{y}=\left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}}=\sqrt{2}^{\sqrt{2} * \sqrt{2}}=\sqrt{2}^{2}=2
$$

Thus, we have irrational x and y with a rational x^{y} (i.e., 2).
One of the cases is true so theorem holds.

Proof by cases.

Theorem: There exist irrational x and y such that x^{y} is rational.
Let $x=y=\sqrt{2}$.
Case 1: $x^{y}=\sqrt{2}^{\sqrt{2}}$ is rational. Done!
Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

- New values: $x=\sqrt{2}^{\sqrt{2}}, y=\sqrt{2}$.

$$
x^{y}=\left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}}=\sqrt{2}^{\sqrt{2} * \sqrt{2}}=\sqrt{2}^{2}=2
$$

Thus, we have irrational x and y with a rational x^{y} (i.e., 2).
One of the cases is true so theorem holds.
Question: Which case holds?

Proof by cases.

Theorem: There exist irrational x and y such that x^{y} is rational.
Let $x=y=\sqrt{2}$.
Case 1: $x^{y}=\sqrt{2}^{\sqrt{2}}$ is rational. Done!
Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

- New values: $x=\sqrt{2}^{\sqrt{2}}, y=\sqrt{2}$.

$$
x^{y}=\left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}}=\sqrt{2}^{\sqrt{2} * \sqrt{2}}=\sqrt{2}^{2}=2
$$

Thus, we have irrational x and y with a rational x^{y} (i.e., 2).
One of the cases is true so theorem holds.
Question: Which case holds? Don't know!!!

Poll: proof review.

Which of the following are (certainly) true?

Poll: proof review.

Which of the following are (certainly) true?
(A) $\sqrt{2}$ is irrational.
(B) $\sqrt{2}^{\sqrt{2}}$ is rational.
(C) $\sqrt{2}^{\sqrt{2}}$ is rational or it isn't.
(D) $\left(2^{\sqrt{2}}\right)^{\sqrt{2}}$ is rational.

Poll: proof review.

Which of the following are (certainly) true?
(A) $\sqrt{2}$ is irrational.
(B) $\sqrt{2}^{\sqrt{2}}$ is rational.
(C) $\sqrt{2}^{\sqrt{2}}$ is rational or it isn't.
(D) $\left(2^{\sqrt{2}}\right)^{\sqrt{2}}$ is rational.
(A),(C),(D)

Poll: proof review.

Which of the following are (certainly) true?
(A) $\sqrt{2}$ is irrational.
(B) $\sqrt{2}^{\sqrt{2}}$ is rational.
(C) $\sqrt{2}^{\sqrt{2}}$ is rational or it isn't.
(D) $\left(2^{\sqrt{2}}\right)^{\sqrt{2}}$ is rational.
(A),(C),(D)
(B) I don't know.

Be careful.

Theorem: $3=4$

Be careful.

Theorem: $3=4$
Proof: Assume $3=4$.

Be careful.

Theorem: $3=4$
Proof: Assume $3=4$.
Start with $12=12$.

Be careful.

Theorem: $3=4$
Proof: Assume $3=4$.
Start with $12=12$.
Divide one side by 3 and the other by 4 to get $4=3$.

Be careful.

Theorem: $3=4$
Proof: Assume $3=4$.
Start with $12=12$.
Divide one side by 3 and the other by 4 to get $4=3$.

By commutativity

Be careful.

Theorem: $3=4$
Proof: Assume $3=4$.
Start with $12=12$.
Divide one side by 3 and the other by 4 to get $4=3$.

By commutativity theorem holds.

Be careful.

Theorem: $3=4$
Proof: Assume $3=4$.
Start with $12=12$.
Divide one side by 3 and the other by 4 to get $4=3$.

By commutativity theorem holds.

Be careful.

Theorem: $3=4$
Proof: Assume $3=4$.
Start with $12=12$.
Divide one side by 3 and the other by 4 to get $4=3$.

By commutativity theorem holds.
Don't assume what you want to prove!

Be really careful!

Theorem: $1=2$
Proof:

Be really careful!

Theorem: $1=2$
Proof: For $x=y$, we have

Be really carefu!!

Theorem: $1=2$
Proof: For $x=y$, we have

$$
\left(x^{2}-x y\right)=x^{2}-y^{2}
$$

Be really carefu!!

Theorem: $1=2$
Proof: For $x=y$, we have

$$
\begin{aligned}
& \left(x^{2}-x y\right)=x^{2}-y^{2} \\
& x(x-y)=(x+y)(x-y)
\end{aligned}
$$

Be really carefu!!

Theorem: $1=2$
Proof: For $x=y$, we have

$$
\begin{gathered}
\left(x^{2}-x y\right)=x^{2}-y^{2} \\
x(x-y)=(x+y)(x-y) \\
x=(x+y)
\end{gathered}
$$

Be really carefu!!

Theorem: $1=2$
Proof: For $x=y$, we have

$$
\begin{gathered}
\left(x^{2}-x y\right)=x^{2}-y^{2} \\
x(x-y)=(x+y)(x-y) \\
x=(x+y) \\
x=2 x
\end{gathered}
$$

Be really carefu!!

Theorem: $1=2$
Proof: For $x=y$, we have

$$
\begin{aligned}
\left(x^{2}-x y\right) & =x^{2}-y^{2} \\
x(x-y) & =(x+y)(x-y) \\
x & =(x+y) \\
x & =2 x \\
1 & =2
\end{aligned}
$$

Be really carefu!!

Theorem: $1=2$
Proof: For $x=y$, we have

$$
\begin{aligned}
\left(x^{2}-x y\right) & =x^{2}-y^{2} \\
x(x-y) & =(x+y)(x-y) \\
x & =(x+y) \\
x & =2 x \\
1 & =2
\end{aligned}
$$

Be really careful!

Theorem: $1=2$
Proof: For $x=y$, we have

$$
\begin{aligned}
\left(x^{2}-x y\right) & =x^{2}-y^{2} \\
x(x-y) & =(x+y)(x-y) \\
x & =(x+y) \\
x & =2 x \\
1 & =2
\end{aligned}
$$

Poll: What is the problem?
(A) Assumed what you were proving.
(B) No problem. Its fine.
(C) $x-y$ is zero.
(D) Can't multiply by zero in a proof.

Be really careful!

Theorem: $1=2$
Proof: For $x=y$, we have

$$
\begin{aligned}
\left(x^{2}-x y\right) & =x^{2}-y^{2} \\
x(x-y) & =(x+y)(x-y) \\
x & =(x+y) \\
x & =2 x \\
1 & =2
\end{aligned}
$$

Poll: What is the problem?
(A) Assumed what you were proving.
(B) No problem. Its fine.
(C) $x-y$ is zero.
(D) Can't multiply by zero in a proof.

Dividing by zero is no good.

Be really careful!

Theorem: $1=2$
Proof: For $x=y$, we have

$$
\begin{aligned}
\left(x^{2}-x y\right) & =x^{2}-y^{2} \\
x(x-y) & =(x+y)(x-y) \\
x & =(x+y) \\
x & =2 x \\
1 & =2
\end{aligned}
$$

Poll: What is the problem?
(A) Assumed what you were proving.
(B) No problem. Its fine.
(C) $x-y$ is zero.
(D) Can't multiply by zero in a proof.

Dividing by zero is no good. Multiplying by zero is wierdly cool!

Be really careful!

Theorem: $1=2$
Proof: For $x=y$, we have

$$
\begin{aligned}
\left(x^{2}-x y\right) & =x^{2}-y^{2} \\
x(x-y) & =(x+y)(x-y) \\
x & =(x+y) \\
x & =2 x \\
1 & =2
\end{aligned}
$$

Poll: What is the problem?
(A) Assumed what you were proving.
(B) No problem. Its fine.
(C) $x-y$ is zero.
(D) Can't multiply by zero in a proof.

Dividing by zero is no good. Multiplying by zero is wierdly cool!
Also: Multiplying inequalities by a negative.

Be really careful!

Theorem: $1=2$
Proof: For $x=y$, we have

$$
\begin{gathered}
\left(x^{2}-x y\right)=x^{2}-y^{2} \\
x(x-y)=(x+y)(x-y) \\
x=(x+y) \\
x=2 x \\
1=2
\end{gathered}
$$

Poll: What is the problem?
(A) Assumed what you were proving.
(B) No problem. Its fine.
(C) $x-y$ is zero.
(D) Can't multiply by zero in a proof.

Dividing by zero is no good. Multiplying by zero is wierdly cool! Also: Multiplying inequalities by a negative.
$P \Longrightarrow Q$ does not mean $Q \Longrightarrow P$.

Summary: Note 2.

Direct Proof:

Summary: Note 2.

Direct Proof:
To Prove: $P \Longrightarrow Q$.

Summary: Note 2.

Direct Proof:
To Prove: $P \Longrightarrow Q$. Assume P.

Summary: Note 2.

Direct Proof:
To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.
$a \mid b$ and $a|c \Longrightarrow a|(b-c)$.

Summary: Note 2.

Direct Proof:
To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.
$a \mid b$ and $a|c \Longrightarrow a|(b-c)$.
By Contraposition:

Summary: Note 2.

Direct Proof:
To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.
$a \mid b$ and $a|c \Longrightarrow a|(b-c)$.
By Contraposition:
To Prove: $P \Longrightarrow Q$

Summary: Note 2.

Direct Proof:
To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.
$a \mid b$ and $a|c \Longrightarrow a|(b-c)$.
By Contraposition:
To Prove: $P \Longrightarrow Q$ Assume $\neg Q$.

Summary: Note 2.

Direct Proof:
To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.
$a \mid b$ and $a|c \Longrightarrow a|(b-c)$.
By Contraposition:
To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.
n^{2} is odd $\Longrightarrow n$ is odd.

Summary: Note 2.

Direct Proof:
To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.
$a \mid b$ and $a|c \Longrightarrow a|(b-c)$.
By Contraposition:
To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$. n^{2} is odd $\Longrightarrow n$ is odd. $\equiv n$ is even $\Longrightarrow n^{2}$ is even.

Summary: Note 2.

Direct Proof:
To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.
$a \mid b$ and $a|c \Longrightarrow a|(b-c)$.
By Contraposition:
To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$. n^{2} is odd $\Longrightarrow n$ is odd. $\equiv n$ is even $\Longrightarrow n^{2}$ is even.
By Contradiction:

Summary: Note 2.

Direct Proof:
To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.
$a \mid b$ and $a|c \Longrightarrow a|(b-c)$.
By Contraposition:
To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$. n^{2} is odd $\Longrightarrow n$ is odd. $\equiv n$ is even $\Longrightarrow n^{2}$ is even.
By Contradiction:
To Prove: P

Summary: Note 2.

Direct Proof:
To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.
$a \mid b$ and $a|c \Longrightarrow a|(b-c)$.
By Contraposition:
To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$. n^{2} is odd $\Longrightarrow n$ is odd. $\equiv n$ is even $\Longrightarrow n^{2}$ is even.
By Contradiction:
To Prove: P Assume $\neg P$.

Summary: Note 2.

Direct Proof:
To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.
$a \mid b$ and $a|c \Longrightarrow a|(b-c)$.
By Contraposition:
To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$. n^{2} is odd $\Longrightarrow n$ is odd. $\equiv n$ is even $\Longrightarrow n^{2}$ is even.
By Contradiction:
To Prove: P Assume $\neg P$. Prove False .
$\sqrt{2}$ is rational.

Summary: Note 2.

Direct Proof:
To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.
$a \mid b$ and $a|c \Longrightarrow a|(b-c)$.
By Contraposition:
To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$. n^{2} is odd $\Longrightarrow n$ is odd. $\equiv n$ is even $\Longrightarrow n^{2}$ is even.
By Contradiction:
To Prove: P Assume $\neg P$. Prove False .
$\sqrt{2}$ is rational.
$\sqrt{2}=\frac{a}{b}$ with no common factors....

Summary: Note 2.

Direct Proof:
To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.
$a \mid b$ and $a|c \Longrightarrow a|(b-c)$.
By Contraposition:
To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.
n^{2} is odd $\Longrightarrow n$ is odd. $\equiv n$ is even $\Longrightarrow n^{2}$ is even.
By Contradiction:
To Prove: P Assume $\neg P$. Prove False .
$\sqrt{2}$ is rational.
$\sqrt{2}=\frac{a}{b}$ with no common factors....
By Cases: informal.

Summary: Note 2.

Direct Proof:
To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.
$a \mid b$ and $a|c \Longrightarrow a|(b-c)$.
By Contraposition:
To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$. n^{2} is odd $\Longrightarrow n$ is odd. $\equiv n$ is even $\Longrightarrow n^{2}$ is even.
By Contradiction:
To Prove: P Assume $\neg P$. Prove False .
$\sqrt{2}$ is rational.
$\sqrt{2}=\frac{a}{b}$ with no common factors....
By Cases: informal.
Universal: show that statement holds in all cases.

Summary: Note 2.

Direct Proof:
To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.
$a \mid b$ and $a|c \Longrightarrow a|(b-c)$.
By Contraposition:
To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.
n^{2} is odd $\Longrightarrow n$ is odd. $\equiv n$ is even $\Longrightarrow n^{2}$ is even.
By Contradiction:
To Prove: P Assume $\neg P$. Prove False .
$\sqrt{2}$ is rational.
$\sqrt{2}=\frac{a}{b}$ with no common factors....
By Cases: informal.
Universal: show that statement holds in all cases.
Existence: used cases where one is true.

Summary: Note 2.

Direct Proof:
To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.
$a \mid b$ and $a|c \Longrightarrow a|(b-c)$.
By Contraposition:
To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.
n^{2} is odd $\Longrightarrow n$ is odd. $\equiv n$ is even $\Longrightarrow n^{2}$ is even.
By Contradiction:
To Prove: P Assume $\neg P$. Prove False .
$\sqrt{2}$ is rational.
$\sqrt{2}=\frac{a}{b}$ with no common factors....
By Cases: informal.
Universal: show that statement holds in all cases.
Existence: used cases where one is true.
Either $\sqrt{2}$ and $\sqrt{2}$ worked.

Summary: Note 2.

Direct Proof:
To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.
$a \mid b$ and $a|c \Longrightarrow a|(b-c)$.
By Contraposition:
To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.
n^{2} is odd $\Longrightarrow n$ is odd. $\equiv n$ is even $\Longrightarrow n^{2}$ is even.
By Contradiction:
To Prove: P Assume $\neg P$. Prove False .
$\sqrt{2}$ is rational.
$\sqrt{2}=\frac{a}{b}$ with no common factors....
By Cases: informal.
Universal: show that statement holds in all cases.
Existence: used cases where one is true.
Either $\sqrt{2}$ and $\sqrt{2}$ worked.
or $\sqrt{2}$ and $\sqrt{2}^{\sqrt{2}}$ worked.

Summary: Note 2.

Direct Proof:
To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.
$a \mid b$ and $a|c \Longrightarrow a|(b-c)$.
By Contraposition:
To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.
n^{2} is odd $\Longrightarrow n$ is odd. $\equiv n$ is even $\Longrightarrow n^{2}$ is even.
By Contradiction:
To Prove: P Assume $\neg P$. Prove False .
$\sqrt{2}$ is rational.
$\sqrt{2}=\frac{a}{b}$ with no common factors....
By Cases: informal.
Universal: show that statement holds in all cases.
Existence: used cases where one is true.
Either $\sqrt{2}$ and $\sqrt{2}$ worked.
or $\sqrt{2}$ and $\sqrt{2}^{\sqrt{2}}$ worked.

Summary: Note 2.

Direct Proof:
To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.
$a \mid b$ and $a|c \Longrightarrow a|(b-c)$.
By Contraposition:
To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.
n^{2} is odd $\Longrightarrow n$ is odd. $\equiv n$ is even $\Longrightarrow n^{2}$ is even.
By Contradiction:
To Prove: P Assume $\neg P$. Prove False .
$\sqrt{2}$ is rational.
$\sqrt{2}=\frac{a}{b}$ with no common factors....
By Cases: informal.
Universal: show that statement holds in all cases.
Existence: used cases where one is true.
Either $\sqrt{2}$ and $\sqrt{2}$ worked. or $\sqrt{2}$ and $\sqrt{2}^{\sqrt{2}}$ worked.
Careful when proving!

Summary: Note 2.

Direct Proof:
To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.
$a \mid b$ and $a|c \Longrightarrow a|(b-c)$.
By Contraposition:
To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.
n^{2} is odd $\Longrightarrow n$ is odd. $\equiv n$ is even $\Longrightarrow n^{2}$ is even.
By Contradiction:
To Prove: P Assume $\neg P$. Prove False .
$\sqrt{2}$ is rational.
$\sqrt{2}=\frac{a}{b}$ with no common factors....
By Cases: informal.
Universal: show that statement holds in all cases.
Existence: used cases where one is true.
Either $\sqrt{2}$ and $\sqrt{2}$ worked. or $\sqrt{2}$ and $\sqrt{2}^{\sqrt{2}}$ worked.
Careful when proving!
Don't assume the theorem.

Summary: Note 2.

Direct Proof:
To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.
$a \mid b$ and $a|c \Longrightarrow a|(b-c)$.
By Contraposition:
To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.
n^{2} is odd $\Longrightarrow n$ is odd. $\equiv n$ is even $\Longrightarrow n^{2}$ is even.
By Contradiction:
To Prove: P Assume $\neg P$. Prove False .
$\sqrt{2}$ is rational.
$\sqrt{2}=\frac{a}{b}$ with no common factors....
By Cases: informal.
Universal: show that statement holds in all cases.
Existence: used cases where one is true.
Either $\sqrt{2}$ and $\sqrt{2}$ worked. or $\sqrt{2}$ and $\sqrt{2}^{\sqrt{2}}$ worked.
Careful when proving!
Don't assume the theorem. Divide by zero.

Summary: Note 2.

Direct Proof:
To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.
$a \mid b$ and $a|c \Longrightarrow a|(b-c)$.
By Contraposition:
To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.
n^{2} is odd $\Longrightarrow n$ is odd. $\equiv n$ is even $\Longrightarrow n^{2}$ is even.
By Contradiction:
To Prove: P Assume $\neg P$. Prove False .
$\sqrt{2}$ is rational.
$\sqrt{2}=\frac{a}{b}$ with no common factors....
By Cases: informal.
Universal: show that statement holds in all cases.
Existence: used cases where one is true.
Either $\sqrt{2}$ and $\sqrt{2}$ worked. or $\sqrt{2}$ and $\sqrt{2}^{\sqrt{2}}$ worked.

Careful when proving!
Don't assume the theorem. Divide by zero.Watch converse.

Summary: Note 2.

Direct Proof:
To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.
$a \mid b$ and $a|c \Longrightarrow a|(b-c)$.
By Contraposition:
To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.
n^{2} is odd $\Longrightarrow n$ is odd. $\equiv n$ is even $\Longrightarrow n^{2}$ is even.
By Contradiction:
To Prove: P Assume $\neg P$. Prove False .
$\sqrt{2}$ is rational.
$\sqrt{2}=\frac{a}{b}$ with no common factors....
By Cases: informal.
Universal: show that statement holds in all cases.
Existence: used cases where one is true.
Either $\sqrt{2}$ and $\sqrt{2}$ worked. or $\sqrt{2}$ and $\sqrt{2}^{\sqrt{2}}$ worked.

Careful when proving!
Don't assume the theorem. Divide by zero.Watch converse. ...

CS70: Note 3. Induction!

Poll. What's the biggest number?
(A) 100
(B) 101
(C) $\mathrm{n}+1$
(D) infinity.
(E) This is about the "recursive leap of faith."

