Lecture 7. Outline.

1. Modular Arithmetic. Clock Math!!!
2. Inverses for Modular Arithmetic: Greatest Common Divisor. Division!!!
3. Euclid's GCD Algorithm A little tricky here!

Hypercube: Can't cut me!

Thm: Any subset S of the hypercube where $|S| \leq|V| / 2$ has $\geq|S|$
edges connecting it to $V-S ;|E \cap S \times(V-S)| \geq|S|$
Terminology:
($S, V-S$) is cut
$(E \cap S \times(V-S))$ - cut edges.
Restatement: for any cut in the hypercube, the number of cut edges is at least the size of the small side.

Hypercubes.

Complete graphs, really connected! But lots of edges.
$|V|(|V|-1) / 2$
Trees, few edges. ($|V|-1$
but just falls apart!
Hypercubes. Really connected. $|V| \log |V|$ edges
Also represents bit-strings nicely.
$G=(V, E)$
$|V|=\{0,1\}^{n}$,
$E \mid=\{(x, y) \mid x$ and y differ in one bit position. $\}$
$\stackrel{0}{\bigcirc}-1$

2^{n} vertices. number of n-bit strings! $n 2^{n-1}$ edges.
2^{n} vertices each of degree n
total degree is $n 2^{n}$ and half as many edges

Proof of Large Cuts.

Thm: For any cut ($S, V-S$) in the hypercube, the number of cut edges is at least the size of the small side.
Proof:
$S=\{0\}$ has $=\{0,1\}$. $|S|=\phi$ has 0

Recursive Definition

A 0 -dimensional hypercube is a node labelled with the empty string of bits.

An n-dimensional hypercube consists of a 0 -subcube (1-subcube) which is a n - 1 -dimensional hypercube with nodes labelled $0 x(1 x)$ with the additional edges ($0 x, 1 x$)

Induction Step Idea

Thm: For any cut ($S, V-S$) in the hypercube, the number of cut edges is at least the size of the small side.
Use recursive definition into two subcubes
Two cubes connected by edges.

Case 1: Count edges inside

subcube inductively.

Case 2: Count inside and acros

Induction Step

Thm: For any cut ($S, V-S$) in the hypercube, the number of cut edges is at least the size of the small side, $|S|$
Proof: Induction Step.
Recursive definition:
$H_{0}=\left(V_{0}, E_{0}\right), H_{1}=\left(V_{1}, E_{1}\right)$, edges E_{x} that connect them.
$H=\left(V_{0} \cup V_{1}, E_{0} \cup E_{1} \cup E_{x}\right)$
$S=S_{0} \cup S_{1}$ where S_{0} in first, and S_{1} in other
Case 1: $\left|S_{0}\right| \leq\left|V_{0}\right| / 2,\left|S_{1}\right| \leq\left|V_{1}\right| / 2$
Both S_{0} and S_{1} are small sides. So by induction.
Edges cut in $H_{0} \geq\left|S_{0}\right|$.
Edges cut in $H_{1} \geq\left|S_{1}\right|$
Total cut edges $\geq\left|S_{0}\right|+\left|S_{1}\right|=|S|$.

Summary.

Euler: $v+f=e+2$.
Tree. Plus adding edge adds face
Planar graphs: $e \leq 3 v=6$
Count face-edge incidences to get $2 e \leq 3 f$
Replace f in Euler.
Coloring:
degree d vertex can be colored if $d+1$ colors.
Small degree vertex in planar graph: 6 color theorem.
Recolor separate and planarity: 5 color theorem.
Graphs:
Trees: sparsest connected.
Complete:densest
Hypercube: middle.

Induction Step. Case 2

Thm: For any cut ($S, V-S$) in the hypercube, the number of cut edges is at least the size of the small side, $|S|$.
Proof: Induction Step. Case 2.
Recall Case 1: $\left|S_{0}\right|,\left|S_{1}\right| \leq|V| / 2$
$S_{1}\left|\leq\left|V_{1}\right| / 2\right.$ since $\left.S\right| \leq|V| / 2$.
$\Longrightarrow \geq\left|S_{1}\right|$ edges cut in E_{1}.
$\left|S_{0}\right| \geq\left|V_{0}\right| / 2 \Longrightarrow\left|V_{0}-S\right| \leq\left|V_{0}\right| / 2$
$\Longrightarrow \geq\left|V_{0}\right|-\left|S_{0}\right|$ edges cut in E_{0}.
Edges in E_{X} connect corresponding nodes. $\Longrightarrow=\left|S_{0}\right|-\left|S_{1}\right|$ edges cut in E_{x}.
Total edges cut:
$\geq\left|S_{1}\right|+\left|V_{0}\right|-\left|S_{0}\right|+\left|S_{0}\right|-\left|S_{1}\right|=\left|V_{0}\right|$
$\left|V_{0}\right|=|V| / 2 \geq|S|$.
Also, case 3 where $\left|S_{1}\right| \geq|V| / 2$ is symmetric

Modular Arithmetic.

Applications: cryptography, error correction.

Hypercubes and Boolean Functions.

The cuts in the hypercubes are exactly the transitions from 0 sets to 1 set on boolean functions on $\{0,1\}^{n}$.
Central area of study in computer science
Yes/No Computer Programs \equiv Boolean function on $\{0,1\}^{n}$
Central object of study.

Key ideas for modular arithmetic.

Theorem: If $d \mid x$ and $d \mid y$, then $d \mid(y-x)$.
Proof:
$x=a d, y=b d$,
$(x-y)=(a d-b d)=d(a-b) \Longrightarrow d \mid(x-y)$.
heorem: Every number $n \geq 2$ can be represented as a product of primes.
Proof: Either prime, or $n=a \times b$, and use strong induction
(Uniqueness? Later.)

Poll

What did we use in our proofs of key ideas?

(A) Distributive Property of multiplication over addition.
(B) Euler's formula.
(C) The definition of a prime number.
(D) Euclid's Lemma.
(A) and (C)

Day of the week.

This is Thursday is September 14, 2023.
What day is it a year from now? on September 14, 2023?
Number days.
Number days.
0 for Sunday, 1 for Monday, ..., 6 for Saturday.
Today: day 4.
5 days from then. day 9 or day 2 or Tuesday.
25 days from then. day 29 or day $1.29=(7) 4+1$
two days are equivalent up to addition/subtraction of multiple of 7 .
11 days from then is day 1 which is Monday!
What day is it a year from then?
Next year is not a leap year. So 365 days from then.
Day $4+365$ or day 369
subtract 7 until smaller than 7 .
divide and get remainder.
$369 / 7$ leaves quotient of 52 and remainder $5.369=7(52)+5$
or September 15, 2022 is a Friday.

Next Up.

Modular Arithmetic.

Years and years..

80 years? 20 leap years. 366×20 days
60 regular years. 365×60 days
Today is day 4.
It is day $4+366 \times 20+365 \times 60$. Equivalent to?
Hmm.
What is remainder of 366 when dividing by 7 ? $52 \times 7+2$.
What is remainder of 365 when dividing by 7? 1
Today is day 4.
Get Day: $4+2 \times 20+1 \times 60=104$
Remainder when dividing by 7 ? $104=14 \times 7+6$
Or September 15, 2102 is Saturday!
Further Simplify Calculation:
20 has remainder 6 when divided by 7 .
60 has remainder 4 when divided by 7
Get Day: $4+2 \times 6+1 \times 4=20$.
Or Day 6. September 14, 2103 is Saturday.
"Reduce" at any time in calculation!

Clock Math

If it is 1:00 now.

What time is it in 2 hours? 3:00!
What time is it in 5 hours? 6:00!
What time is it in 15 hours? 16:00!
Actually $4: 00$.
16 is the "same as 4 " with respect to a 12 hour clock system
Clock time equivalent up to to addition/subtraction of 12 .
What time is it in 100 hours? 101:00! or 5:00

$$
101=12 \times 8+5
$$

5 is the same as 101 for a 12 hour clock system.
Clock time equivalent up to addition of any integer multiple of 12
Custom is only to use the representative in $\{12,1, \ldots, 11\}$
(Almost remainder, except for 12 and 0 are equivalent.)

Modular Arithmetic: refresher.

x is congruent to y modulo m or " $x \equiv y(\bmod m)$ "
If and only if $(x-y$) is divisible by m
\ldots or x and y have the same remainder w.r.t. m.
...or $x=y+k m$ for some integer k.
Mod 7 equivalence or residue classes:
$\{\ldots,-7,0,7,14, \ldots\} \quad\{\ldots,-6,1,8,15, \ldots\}$
Useful Fact: Addition, subtraction, multiplication can be done with any equivalent x and y.
or " $a \equiv c(\bmod m)$ and $b \equiv d(\bmod m)$
$\Longrightarrow a+b \equiv c+d(\bmod m)$ and $a \cdot b=c \cdot d(\bmod m) "$
Proof: If $a \equiv c(\bmod m)$, then $a=c+k m$ for some integer k.
If $b \equiv d(\bmod m)$, then $b=d+j m$ for some integer j.
Therefore, $a+b=c+d+(k+j) m$ and since $k+j$ is integer.
$\Longrightarrow a+b \equiv c+d(\bmod m)$.
Can calculate with representative in $\{0, \ldots, m-1\}$.

Notation

$x(\bmod m)$ or $\bmod (x, m)$

- remainder of x divided by m in $\{0, \ldots, m-1\}$.
$\bmod (x, m)=x-\left\lfloor\frac{x}{m}\right\rfloor m$
$\left\lfloor\frac{x}{m}\right\rfloor$ is quotient.
$\bmod (29,12)=29-\left(\left\lfloor\frac{29}{12}\right\rfloor\right) \times 12=29-(2) \times 12=\%=5$
Work in this system.
$a \equiv b(\bmod m)$.
Says two integers a and b are equivalent modulo m

Modulus is m

$6 \equiv 3+3 \equiv 3+10(\bmod 7)$.
$6=3+3=3+10(\bmod 7)$
Generally, not $6(\bmod 7)=13(\bmod 7)$.
But probably won't take off points, still hard for us to read

Greatest Common Divisor and Inverses.

Thm:
If greatest common divisor of x and $m, \operatorname{gcd}(x, m)$, is 1 , then x has a
multiplicative inverse modulo m.
Proof \Longrightarrow :
Claim: The set $S=\{0 x, 1 x, \ldots,(m-1) x\}$ contains
$y \equiv 1 \bmod m$ if all distinct modulo m.
Each of m numbers in S correspond to one of m equivalence classes modulo m.
\Longrightarrow One must correspond to 1 modulo m. Inverse Exists!
Proof of Claim: If not distinct, then $\exists a, b \in\{0, \ldots, m-1\}, a \neq b$, where $(a x \equiv b x(\bmod m)) \Longrightarrow(a-b) x \equiv 0(\bmod m)$
$\operatorname{Or}(a-b) x=k m$ for some integer k.
$\operatorname{gcd}(x, m)=1$
\Longrightarrow Prime factorization of m and x do not contain common primes.
\Longrightarrow Prime factorization of m and x do not contain common primes
So $(a-b)$ has to be multiple of m.
$\Longrightarrow(a-b) \geq m$. But $a, b \in\{0, \ldots m-1\}$. Contradiction.

Inverses and Factors.

Division: multiply by multiplicative inverse.

$$
2 x=3 \Longrightarrow\left(\frac{1}{2}\right) \cdot 2 x=\left(\frac{1}{2}\right) \cdot 3 \Longrightarrow x=\frac{3}{2}
$$

Multiplicative inverse of x is y where $x y=1$;

1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element
Multiplicative inverse of $x \bmod m$ is y with $x y=1(\bmod m)$.
For 4 modulo 7 inverse is $2: \quad 2 \cdot 4 \equiv 8 \equiv 1(\bmod 7)$.
Can solve $4 x=5(\bmod 7)$
$x=32$ (maxd $72:=5$ (harek! $74(3)=12=5(\bmod 7)$.

$x=3(\bmod 7)$

$8 k \not \equiv 1(\bmod 12)$ for any k.

Proof review. Consequence.
Thm: If $\operatorname{gcd}(x, m)=1$, then x has a multiplicative inverse modulo m
Proof Sketch: The set $S=\{0 x, 1 x, \ldots,(m-1) x\}$ contains
$y \equiv 1 \bmod m$ if all distinct modulo m.
For $x=4$ and $m=6$. All products of 4 ..
$S=\{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\}=\{0,4,8,12,16,20\}$
reducing $(\bmod 6)$
$S=\{0,4,2,0,4,2\}$
Not distinct. Common factor 2. Can't be 1. No inverse
For $x=5$ and $m=6$.
$S=\{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\}=\{0,5,4,3,2,1\}$
All distinct, contains 1 ! 5 is multiplicative inverse of $5(\bmod 6)$
(Hmm. What normal number is it own multiplicative inverse?) 1-1.
$5 x=3(\bmod 6)$ What is x ? Multiply both sides by 5 .

$$
x=15=3(\bmod 6)
$$

$4 x=3(\bmod 6)$ No solutions. Can't get an odd.
$4 x=2(\bmod 6)$ Two solutions! $x=2,5(\bmod 6)$
Very different for elements with inverses.

Poll

Mark true statement

(A) Mutliplicative inverse of $2 \bmod 5$ is $3 \bmod 5$
B) The multiplicative inverse of $((n-1)(\bmod n)=((n-1)(\bmod n))$.
C) Multiplicative inverse of $2 \bmod 5$ is 0.5 .
D) Multiplicative inverse of $4=-1(\bmod 5)$.
E) $(-1) x(-1)=1$. Woohoo
(F) Multiplicative inverse of $4 \bmod 5$ is $4 \bmod 5$.
(C) is false. 0.5 has no meaning in arithmetic modulo 5 .

Proof Review 2: Bijections

If $\operatorname{gcd}(x, m)=1$.
Then the function $f(a)=x a \bmod m$ is a bijection
One to one: there is a unique pre-image(single x where $y=f(x)$.)
Onto: the sizes of the domain and co-domain are the same.
$x=3, m=4$.
$f(1)=3(1)=3(\bmod 4)$
$f(2)=6=2(\bmod 4)$
$(3)=1(\bmod 3)$.
Oh yeah. $f(0)=0(\bmod 3)$.
Bijection \equiv unique pre-image and same size.
All the images are distinct. \Longrightarrow unique pre-image for any image
$x=2, m=4$.
$f(1)=2$,
$f(2)=0$,
(3) $=2$

Oh yeah. $f(0)=0$
Not a bijection.

Poll

Which is bijection?

(A) $f(x)=x$ for domain and range being \mathbb{R}
(B) $f(x)=a x(\bmod n)$ for $x \in\{0, \ldots, n-1\}$ and $\operatorname{gcd}(a, n)=2$ (C) $f(x)=a x(\bmod n)$ for $x \in\{0, \ldots, n-1\}$ and $\operatorname{gcd}(a, n)=1$ (B) is not.

Inverses

Next up

Euclid's Algorithm.
Runtime.
Euclid's Extended Algorithm

Only if

Thm: If $\operatorname{gcd}(x, m) \neq 1$ then x has no multiplicative inverse modulo m
Assume the inverse of a is x^{-1}, or $a x=1+k m$.
$x=n d$ and $m=\ell d$ for $d>1$.
Thus,
$a(n d)=1+k \ell d$ or
$d(n a-k \ell)=1$.
But $d>1$ and $z=(n a-k \ell) \in \mathbb{Z}$.
so $d z \neq 1$ and $d z=1$. Contradiction.

Refresh

Does 2 have an inverse mod 8? No.
Any multiple of 2 is 2 away from $0+8 k$ for any $k \in \mathbb{N}$.
Does 2 have an inverse mod 9 ? Yes. 5
$2(5)=10=1 \bmod 9$
Does 6 have an inverse mod 9 ? No
Any multiple of 6 is 3 away from $0+9 k$ for any $k \in \mathbb{N}$. $3=\operatorname{gcd}(6,9)$!
x has an inverse modulo m if and only i
$\operatorname{gcd}(x, m)>1$? No.
$\operatorname{gcd}(x, m)=1$? Yes.
Now what?:
Compute gcd!
Compute Inverse modulo m.

Finding inverses.

How to find the inverse?

How to find if x has an inverse modulo m ?
Find gcd (x, m).
Greater than 1? No multiplicative inverse Equal to 1? Mutliplicative inverse.

Algorithm: Try all numbers up to x to see if it divides both x and m. Very slow.

Divisibility..

Notation: $d \mid x$ means " d divides x " or $x=k d$ for some integer k.
Fact: If $d \mid x$ and $d \mid y$ then $d \mid(x+y)$ and $d \mid(x-y)$.

Is it a fact? Yes? No?

Proof: $d \mid x$ and $d \mid y$ or

$x=\ell d$ and $y=k d$
$\Longrightarrow x-y=k d-\ell d=(k-\ell) d \Longrightarrow d \mid(x-y)$

More divisibility

Notation: $d \mid x$ means " d divides x " or
$x=k d$ for some integer k
Lemma 1: If $d \mid x$ and $d \mid y$ then $d \mid y$ and $d \mid \bmod (x, y)$.
Proof:

$$
\bmod (x, y)=x-\lfloor x / y\rfloor \cdot y
$$

$=x-s \cdot y$ for integer s
$=k d-s \ell d$ for integers k, ℓ where $x=k d$ and $y=\ell d$
$=(k-s \ell) d$
Therefore $d \mid \bmod (x, y)$. And $d \mid y$ since it is in condition.
Lemma 2: If $d \mid y$ and $d \mid \bmod (x, y)$ then $d \mid y$ and $d \mid x$.
Proof...: Similar. Try this at home.
GCD Mod Corollary: $\operatorname{gcd}(x, y)=\operatorname{gcd}(y, \bmod (x, y))$.
Proof: x and y have same set of common divisors as x and
$\bmod (x, y)$ by Lemma 1 and 2.
Same common divisors \Longrightarrow largest is the same.

Euclid procedure is fast.

Theorem: (euclid $\mathrm{x} y$) uses $2 n$ "divisions" where $n=b(x) \approx \log _{2} x$.
Is this good? Better than trying all numbers in $\{2, \ldots y / 2\}$?
Check 2 , check 3 , check 4 , check $5 \ldots$, check $y / 2$.
If $y \approx x$ roughly y uses n bits ..
2^{n-1} divisions! Exponential dependence on size!
101 bit number. $2^{100} \approx 10^{30}=$ "million, trillion, trillion" divisions!
$2 n$ is much faster! .. roughly 200 divisions.

Euclid's algorithm.

GCD Mod Corollary: $\operatorname{gcd}(x, y)=\operatorname{gcd}(y, \bmod (x, y))$
Hey, what's $\operatorname{gcd}(7,0) ? \quad 7 \quad$ since 7 divides 7 and 7 divides 0
What's $\operatorname{gcd}(x, 0)$? x
(define (euclid x y)
(if (=y 0)
(euclid $y(\bmod x y)))$ ***
Theorem: (euclid xy) $=\operatorname{gcd}(x, y)$ if $x \geq y$.
Proof: Use Strong Induction.
Base Case: $y=0$, " x divides y and x "
Induction Step: " x is common divisor and clearly largest."
call in line (***) meets conditions plus arguments "smaller" and by strong induction hypothesis
computes $\operatorname{gcd}(y, \bmod (x, y))$
which is $\operatorname{gcd}(x, y)$ by GCD Mod Corollary.

Poll.

Assume $\log _{2} 1,000,000$ is $\mathbf{2 0}$ to the nearest integer.

Mark what's true.

(A) The size of $1,000,000$ is 20 bits.
(B) The size of $1,000,000$ is one million.
(C) The value of $1,000,000$ is one million
(D) The value of $1,000,000$ is 20 .
(A) and (C).

Excursion: Value and Size

Before discussing running time of gcd procedure.
What is the value of $1,000,000$?
one million or $1,000,000$!
What is the "size" of $1,000,000$?
Number of digits in base 10: 7
Number of bits (a digit in base 2): 21
For a number x, what is its size in bits?

$$
n=b(x) \approx \log _{2} x
$$

Poll

Which are correct?

(A) $\operatorname{gcd}(700,568)=\operatorname{gcd}(568,132)$
B) $\operatorname{gcd}(8,3)=\operatorname{gcd}(3,2)$
C) $\operatorname{gcd}(8,3)=1$
(D) $\operatorname{gcd}(4,0)=4$

Algorithms at work.
Trying everything
Check 2, check 3 , check 4 , check $5 \ldots$, check $y / 2$.
"($g c d x y$)" at work.
euclid (700,568)
euclid (568, 132)
euclid(132, 40)
euclid $(12,4)$
$\underset{4}{\operatorname{euclid}(4,0)}$
4
Notice: The first argument decreases rapidly.
At least a factor of 2 in two recursive calls.
(The second is less than the first.)

Remark

(define (euclid x y) (if (= y 0) x (euclid y (- x y))))
Didn't necessarily need to do gcd.
Runtime proof still works.

Runtime Proof.

(define (euclid x y)
(if (= y 0)
x
(euclid y (mod xy)))
Theorem: (euclid x y) uses $O(n)$ "divisions" where $n=b(x)$.
Proof:
Fact:
First arg decreases by at least factor of two in two recursive calls.
After $2 \log _{2} x=O(n)$ recursive calls, argument x is 1 bit number.
One more recursive call to finish.
1 division per recursive call.
$O(n)$ divisions.

Finding an inverse?

We showed how to efficiently tell if there is an inverse Extend euclid to find inverse.

Runtime Proof (continued.)

(define (euclid x y)
(if (= y 0)
(euclid $y(\bmod x y)))$
Fact:
First arg decreases by at least factor of two in two recursive calls
Proof of Fact: Recall that first argument decreases every call.
Case 1: $y<x / 2$, first argument is y
\Longrightarrow true in one recursive call;
Case 2: Will show " $y \geq x / 2$ " \Longrightarrow " $\bmod (x, y) \leq x / 2$."
$\bmod (x, y)$ is second argument in next recursive call,
and becomes the first argument in the next one.
When $y \geq x / 2$, then
$\left\lfloor\frac{x}{y}\right\rfloor=1$,
$\bmod (x, y)=x-y\left\lfloor\frac{x}{y}\right\rfloor=x-y \leq x-x / 2=x / 2$

Euclid's GCD algorithm.
(define (euclid x y)
(if (= y 0)
(euclid $y(\bmod x y)))$
Computes the $\operatorname{gcd}(x, y)$ in $O(n)$ divisions.
For x and m, if $\operatorname{gcd}(x, m)=1$ then x has an inverse modulo m.

Multiplicative Inverse.

GCD algorithm used to tell if there is a multiplicative inverse.
How do we find a multiplicative inverse?

Modular Arithmetic Lecture in a minute

Modular Arithmetic: $x \equiv y(\bmod N)$ if $x=y+k N$ for some integer k
For $a \equiv b(\bmod N)$, and $c \equiv d(\bmod N)$,
$a c=b d(\bmod N)$ and $a+b=c+d(\bmod N)$.
Division? Multiply by multiplicative inverse.
$a(\bmod N)$ has multiplicative inverse, $a^{-1}(\bmod N)$. If and only if $\operatorname{gcd}(a, N)=1$
Why? If: $f(x)=a x(\bmod N)$ is a bijection on $\{1, \ldots, N-1\}$.
$a x-a y=0(\bmod N) \Longrightarrow a(x-y)$ is a multiple of N If $\operatorname{gcd}(a, N)=1$,
then $(x-y)$ must contain all primes in prime factorization of N, and is therefore be bigger than N
Only if: For $a=x d$ and $N=y d$,
any $m a+k N=d(m x-k y)$ or is a multiple of d,
and is not 1 .
Euclid's Alg: $\operatorname{gcd}(x, y)=\operatorname{gcd}(y \bmod x, x)$
Fast cuz value drops by a factor of two every two recursive calls
Know if there is an inverse, but how do we find it? On Tuesday!
Extended GCD Algorithm.

$$
\text { ext-gcd }(x, y)
$$

if $y=0$ then return $(x, 1,0)$
else

$$
(d, a, b):=\operatorname{ext}-\operatorname{gcd}(y, \bmod (x, y))
$$

Claim: Returns $(d, a, b): d=\operatorname{gcd}(a, b)$ and $d=a x+b y$.

$$
\begin{aligned}
& \text { ext-gcd }(35,12) \\
& \text { ext-gcd }(12,11) \\
& \begin{array}{r}
\text { ext-gcd }(11,1 \\
\text { ext-gcd }(1,0
\end{array} \\
& \text { ext-gca (1,0) } \\
& \text { return }(1,1,0) ; ; 1=(1) 1+(0) 0 \\
& \text { netun (1, }, 1=(1) 12+(-1) 1 \\
& \text { eturn }(1,-1,3) \quad ; \quad 1=(-1) 35+(3) 12
\end{aligned}
$$

Extended GCD

Euclid's Extended GCD Theorem:

For any x, y there are integers a, b where

$$
a x+b y=d \quad \text { where } d=\operatorname{gcd}(x, y) .
$$

"Make d out of sum of multiples of x and y."
What is multiplicative inverse of x modulo m ?
By extended GCD theorem, when $\operatorname{gcd}(x, m)=1$.

$$
a x+b m=1
$$

$$
a x \equiv 1-b m \equiv 1(\bmod m) .
$$

So a multiplicative inverse of $x(\bmod m)!!$
Example: For $x=12$ and $y=35, \operatorname{gcd}(12,35)=1$
(3) $12+(-1) 35=1$
$a=3$ and $b=-1$
The multiplicative inverse of $12(\bmod 35)$ is 3 .

Extended GCD Algorithm.

ext-gcd (x, y)
if $y=0$ then return $(x, 1,0)$
else
$(a, a, b):=\operatorname{ext}-\operatorname{gcd}(y, \bmod (x, y)$

Theorem: Returns (d, a, b), where $d=\operatorname{gcd}(a, b)$ and

$$
d=a x+b y .
$$

Correctness.

Proof: Strong Induction.
Base: ext-gcd $(x, 0)$ returns $(d=x, 1,0)$ with $x=(1) x+(0) y$
Induction Step: Returns (d, A, B) with $d=A x+B y$
Ind hyp: ext-gcd $(y, \bmod (x, y))$ returns (d, a, b) with $d=a y+b(\bmod (x, y))$
$\operatorname{ext}-\operatorname{gcd}(x, y)$ calls ext-gcd $(y, \bmod (x, y))$ so
$d=a y+b \cdot(\bmod (x, y))$
$=a y+b \cdot\left(x-\left\lfloor\frac{x}{y}\right\rfloor y\right)$
$=b x+\left(a-\left\lfloor\frac{x}{y}\right\rfloor \cdot b\right) y$
And ext-gcd returns $\left(d, b,\left(a-\left\lfloor\frac{x}{y}\right\rfloor \cdot b\right)\right)$ so theorem holds!
${ }^{1}$ Assume d is $\operatorname{gcd}(x, y)$ by previous proof.

Review Proof: step.

Prove: returns (d, A, B) where $d=A x+B y$
ext-gcd (x,y)
if $y=0$ then return (x, 1, 0)
els

$(d, a, b):=\operatorname{ext}-\operatorname{gcd}(y, \bmod (x, y))$

return (d, b, a floor(x/y) * b)
Recursively: $d=a y+b\left(x-\left\lfloor\frac{x}{y}\right\rfloor \cdot y\right) \Longrightarrow d=b x-\left(a-\left\lfloor\frac{x}{y}\right\rfloor b\right) y$ Returns $\left(d, b,\left(a-\left\lfloor\frac{x}{y}\right\rfloor \cdot b\right)\right)$

Hand Calculation Method for Inverses.

Example: $\operatorname{gcd}(7,60)=1$. $\operatorname{egcd}(7,60)$.

$$
7(0)+60(1)=60
$$

$7(1)+60(0)=7$
$7(-8)+60(1)=4$
$7(9)+60(-1)=3$

$$
7(-17)+60(2)=1
$$

Confirm: $-119+120=1$

Wrap-up

Conclusion: Can find multiplicative inverses in $O(n)$ time!
Very different from elementary school: try 1, try 2, try $3 \ldots$ $2^{n / 2}$
Inverse of $500,000,357$ modulo $1,000,000,000,000$? ≤ 80 divisions. versus $1,000,000$

Internet Security.
Public Key Cryptography: 512 digits.
512 divisions vs.
(1000) ${ }^{5}$ divisions.

Internet Security: Next Week.

