Today

Homework/No-Homework option.
Deadline is set for after Midterm.
Finish Euclid.
Bijection/CRT/Isomorphism.
Fermat's Little Theorem.

Quick review

Review runtime proof.

Runtime Proof.

```
(define (euclid x y)
    (if (= y 0)
        x
        (euclid y (mod x y))))
```

Theorem: (euclid x y) uses $O(n)$ "divisions" where $n=b(x)$.
Proof:

Fact:

First arg decreases by at least factor of two in two recursive calls.
After $2 \log _{2} x=O(n)$ recursive calls, argument x is 1 bit number. One more recursive call to finish.
1 division per recursive call.
$O(n)$ divisions.

Runtime Proof (continued.)

```
(define (euclid x y)
    (if (= y 0)
        x
        (euclid y (mod x y))))
```


Fact:

First arg decreases by at least factor of two in two recursive calls.
Proof of Fact: Recall that first argument decreases every call.
Case 1: $y<x / 2$, first argument is y \Longrightarrow true in one recursive call;
Case 2: Will show " $y \geq x / 2$ " \Longrightarrow " $\bmod (x, y) \leq x / 2$."
$\bmod (x, y)$ is second argument in next recursive call, and becomes the first argument in the next one.
When $y \geq x / 2$, then

$$
\begin{aligned}
& \left\lfloor\frac{x}{y}\right\rfloor=1 \\
& \bmod (x, y)=x-y\left\lfloor\frac{x}{y}\right\rfloor=x-y \leq x-x / 2=x / 2
\end{aligned}
$$

Poll

Mark correct answers.

Note: $\operatorname{Mod}(\mathrm{x}, \mathrm{y})$ is the remainder of x divided by y and $y<x$.
(A) $\bmod (x, y)<y$
(B) If euclid (x, y) calls euclid(u, v) calls euclid (a, b) then $a<=x / 2$.
(C) euclid (x, y) calls euclid (u, v) means $u=y$.
(D) if $y>x / 2, \bmod (x, y)=(x-y)$
(E) if $y>x / 2, \bmod (x, y)<x / 2$

Finding an inverse?

We showed how to efficiently tell if there is an inverse.
Extend euclid to find inverse.

Euclid's GCD algorithm.

```
(define (euclid x y)
    (if (= y 0)
        x
        (euclid y (mod x y))))
```

Computes the $\operatorname{gcd}(x, y)$ in $O(n)$ divisions. (Remember $n=\log _{2} x$.)
For x and m, if $\operatorname{gcd}(x, m)=1$ then x has an inverse modulo m.

Multiplicative Inverse.

GCD algorithm used to tell if there is a multiplicative inverse. How do we find a multiplicative inverse?

Extended GCD

Euclid's Extended GCD Theorem: For any x, y there are integers a, b such that

$$
a x+b y=d \quad \text { where } d=\operatorname{gcd}(x, y)
$$

"Make d out of sum of multiples of x and y."
What is multiplicative inverse of x modulo m ?
By extended GCD theorem, when $\operatorname{gcd}(x, m)=1$.

$$
\begin{gathered}
a x+b m=1 \\
a x \equiv 1-b m \equiv 1(\bmod m)
\end{gathered}
$$

So a multiplicative inverse of $x(\bmod m)!!$
Example: For $x=12$ and $y=35, \operatorname{gcd}(12,35)=1$.
(3) $12+(-1) 35=1$.

$$
a=3 \text { and } b=-1 .
$$

The multiplicative inverse of $12(\bmod 35)$ is 3 .
Check: $3(12)=36=1(\bmod 35)$.

Make d out of multiples of x and $y .$. ?

```
gcd(35,12)
    gcd(12, 11) ;; gcd(12, 35%12)
        gcd(11, 1) ; ; gcd(11, 12%11)
            gcd(1,0)
                1
```

How did gcd get 11 from 35 and 12?
$35-\left\lfloor\frac{35}{12}\right\rfloor 12=35-(2) 12=11$
How does gcd get 1 from 12 and 11 ?

$$
12-\left\lfloor\frac{12}{11}\right\rfloor 11=12-(1) 11=1
$$

Algorithm finally returns 1 .
But we want 1 from sum of multiples of 35 and 12?
Get 1 from 12 and 11.

$$
1=12-(1) 11=12-(1)(35-(2) 12)=(3) 12+(-1) 35
$$

Get 11 from 35 and 12 and plugin.... Simplify. $a=3$ and $b=-1$.

Extended GCD Algorithm.

```
ext-gcd(x,y)
    if y = 0 then return(x, 1, 0)
        else
        (d, a, b) := ext-gcd(y, mod (x,y))
        return (d, b, a - floor(x/y) * b)
```

Claim: Returns $(d, a, b): d=\operatorname{gcd}(a, b)$ and $d=a x+b y$.


```
ext-gcd (35,12)
    ext-gcd(12, 11)
        ext-gcd(11, 1)
        ext-gcd (1,0)
        return (1,1,0) ; ; 1 = (1) 1 + (0) 0
        return (1,0,1) ; ; 1 = (0) 11 + (1) 1
        return (1,1,-1) ; ; 1 = (1) 12 + (-1)11
return (1,-1, 3) ; ; 1 = (-1)35 +(3)12
```


Extended GCD Algorithm.

```
ext-gcd(x,y)
    if y = 0 then return(x, 1, 0)
        else
            (d, a, b) := ext-gcd(y, mod (x,y))
            return (d, b, a - floor(x/y) * b)
```

Theorem: Returns (d, a, b), where $d=\operatorname{gcd}(a, b)$ and

$$
d=a x+b y
$$

Correctness.

Proof: Strong Induction. ${ }^{1}$
Base: ext- $\operatorname{gcd}(x, 0)$ returns $(d=x, 1,0)$ with $x=(1) x+(0) y$.
Induction Step: Returns (d, A, B) with $d=A x+B y$
Ind hyp: ext-gcd $(y, \bmod (x, y))$ returns (d, a, b) with

$$
d=a y+b(\bmod (x, y))
$$

$\operatorname{ext}-\operatorname{gcd}(x, y)$ calls ext-gcd $(y, \bmod (x, y))$ so

$$
\begin{aligned}
d & =a y+b \cdot(\bmod (x, y)) \\
& =a y+b \cdot\left(x-\left\lfloor\frac{x}{y}\right\rfloor y\right) \\
& =b x+\left(a-\left\lfloor\frac{x}{y}\right\rfloor \cdot b\right) y
\end{aligned}
$$

And ext-gcd returns $\left(d, b,\left(a-\left\lfloor\frac{x}{y}\right\rfloor \cdot b\right)\right)$ so theorem holds!
${ }^{1}$ Assume d is $\operatorname{gcd}(x, y)$ by previous proof.

Review Proof: step.

```
ext-gcd(x,y)
    if y = 0 then return(x, 1, 0)
        else
            (d, a, b) := ext-gcd(y, mod (x,y))
            return (d, b, a - floor(x/y) * b)
```

Recursively: $d=a y+b\left(x-\left\lfloor\frac{x}{y}\right\rfloor \cdot y\right) \Longrightarrow d=b x-\left(a-\left\lfloor\frac{x}{y}\right\rfloor b\right) y$
Returns $\left(d, b,\left(a-\left\lfloor\frac{x}{y}\right\rfloor \cdot b\right)\right)$.

Hand Calculation Method for Inverses.

Example: $\operatorname{gcd}(7,60)=1$. $\operatorname{egcd}(7,60)$.

$$
\begin{aligned}
7(0)+60(1) & =60 \\
7(1)+60(0) & =7 \\
7(-8)+60(1) & =4 \\
7(9)+60(-1) & =3 \\
7(-17)+60(2) & =1
\end{aligned}
$$

Confirm: $-119+120=1$
Note: an "iterative" version of the e-gcd algorithm.

Fundamental Theorem of Arithmetic.

Thm: Every natural number can be written as the product of primes.
Proof: n is either prime (base cases)
or $n=a \times b$ and a and b can be written as product of primes.
Thm: The prime factorization of n is unique up to reordering.
Fundamental Theorem of Arithmetic: Every natural number can be written as the a unique (up to reordering) product of primes.
Generalization: things with a "division algorithm".
One example: polynomial division.

No shared common factors, and products.

Claim: For $x, y, z \in \mathbb{Z}^{+}$with $\operatorname{gcd}(x, y)=1$ and $x \mid y z$ then $x \mid z$.
Idea: x doesn't share common factors with y so it must divide z.

Euclid: $1=a x+b y$.
Observe: $x \mid a x z$ and $x \mid$ byz (since $x \mid y z$), and x divides the sum.
$\Longrightarrow x \mid a x z+b y z$
And $a x z+b y z=z$, thus $x \mid z$.

Used to prove:
That if $\operatorname{gcd}(x, m)=1$, then x has multiplicative inverse modulo m. So used Extended Euclid through this lemma.
Used to prove that the prime factorization of a number is unique. Induction: Divide by largest power of a prime. And induct, on remaining.

Wrap-up

Conclusion: Can find multiplicative inverses in $O(n)$ time!
Very different from elementary school: try 1, try 2, try 3...
$2^{n / 2}$
Inverse of 500,000,357 modulo 1,000,000,000,000?
≤ 80 divisions.
versus $1,000,000$
Internet Security.
Public Key Cryptography: 512 digits.
512 divisions vs.
(100) ${ }^{5}$ divisions.

Internet Security: Soon.

Fundamental Theorem of Arithmetic:uniqueness

Thm: The prime factorization of n is unique up to reordering.
Assume not.

$$
n=p_{1} \cdot p_{2} \cdots p_{k} \text { and } n=q_{1} \cdot q_{2} \cdots q_{l} .
$$

Fact: If $p \mid q_{1} \ldots q_{l}$, then $p=q_{j}$ for some j.
If $\operatorname{gcd}\left(p, q_{l}\right)=1, \Longrightarrow p_{1} \mid q_{1} \cdots q_{l-1}$ by Claim.
If $\operatorname{gcd}\left(p, q_{l}\right)=d$, then d is a common factor.
If both prime, both only have 1 and themselves as factors.
Thus, $p=q_{l}=d$.

End proof of fact.

Proof by induction.
Base case: If $I=1, p_{1} \cdots p_{k}=q_{1}$.
But if q_{1} is prime, only prime factor is q_{1} and $p_{1}=q_{1}$ and $I=k=1$.
Induction step: From Fact: $p_{1}=q_{j}$ for some j.

$$
n / p_{1}=p_{2} \ldots p_{k} \text { and } n / q_{j}=\prod_{i \neq j} q_{i} .
$$

These two expressions are the same up to reordering by induction.
And p_{1} is matched to q_{j}.

Lots of Mods

$x=5(\bmod 7)$ and $x=3(\bmod 5)$.
What is $x(\bmod 35)$?
Let's try 5 . Not $3(\bmod 5)$!
Let's try 3 . Not $5(\bmod 7)!$
If $x=5(\bmod 7)$
then x is in $\{5,12,19,26,33\}$.
Oh, only 33 is $3(\bmod 5)$.
Hmmm... only one solution.
A bit slow for large values.

Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.
Find $x=a(\bmod m)$ and $x=b(\bmod n)$ where $\operatorname{gcd}(m, n)=1$.
CRT Thm: There is a unique solution $x(\bmod m n)$. Proof (solution exists):
Consider $u=n\left(n^{-1}(\bmod m)\right)$.

$$
u=0(\bmod n) \quad u=1(\bmod m)
$$

Consider $v=m\left(m^{-1}(\bmod n)\right)$.

$$
v=1(\bmod n) \quad v=0(\bmod m)
$$

Let $x=a u+b v$.
$x=a(\bmod m)$ since $b v=0(\bmod m)$ and $a u=a(\bmod m)$
$x=b(\bmod n)$ since $a u=0(\bmod n)$ and $b v=b(\bmod n)$
This shows there is a solution.

Simple Chinese Remainder Theorem.

CRT Thm: There is a unique solution $x(\bmod m n)$.
Proof (uniqueness):
If not, two solutions, x and y.

$$
(x-y) \equiv 0(\bmod m) \text { and }(x-y) \equiv 0(\bmod n)
$$

$\Longrightarrow(x-y)$ is multiple of m and n
$\operatorname{gcd}(m, n)=1 \Longrightarrow$ no common primes in factorization m and n

$$
\Longrightarrow m n \mid(x-y)
$$

$\Longrightarrow x-y \geq m n \Longrightarrow x, y \notin\{0, \ldots, m n-1\}$.
Thus, only one solution modulo mn .

Poll.

My love is won, Zero and one. Nothing and nothing done.
What is the rhyme saying?
(A) Multiplying by 1 , gives back number. (Does nothing.)
(B) Adding 0 gives back number. (Does nothing.)
(C) Rao has gone mad.
(D) Multiplying by 0 , gives 0 .
(E) Adding one does, not too much.

All are (maybe) correct.
(E) doesn't have to do with the rhyme.
(C) Recall Polonius:
"Though this be madness, yet there is method in 't."

CRT:isomorphism.

For $m, n, \operatorname{gcd}(m, n)=1$.

$$
\begin{aligned}
& x \bmod m n \leftrightarrow x=a \bmod m \text { and } x=b \bmod n \\
& y \bmod m n \leftrightarrow y=c \bmod m \text { and } y=d \bmod n
\end{aligned}
$$

Also, true that $x+y \bmod m n \leftrightarrow a+c \bmod m$ and $b+d \bmod n$.
Mapping is "isomorphic": corresponding addition (and multiplication) operations consistent with mapping.

Fermat's Theorem: Reducing Exponents.

Fermat's Little Theorem: For prime p, and $a \not \equiv 0(\bmod p)$,

$$
a^{p-1} \equiv 1(\bmod p)
$$

Proof: Consider $S=\{a \cdot 1, \ldots, a \cdot(p-1)\}$.
All different modulo p since a has an inverse modulo p.
S contains representative of $\{1, \ldots, p-1\}$ modulo p.

$$
(a \cdot 1) \cdot(a \cdot 2) \cdots(a \cdot(p-1)) \equiv 1 \cdot 2 \cdots(p-1) \quad \bmod p
$$

Since multiplication is commutative.

$$
a^{(p-1)}(1 \cdots(p-1)) \equiv(1 \cdots(p-1)) \quad \bmod p .
$$

Each of $2, \ldots(p-1)$ has an inverse modulo p, solve to get...

$$
a^{(p-1)} \equiv 1 \quad \bmod p
$$

Poll

Which was used in Fermat's theorem proof?
(A) The mapping $f(x)=a x \bmod p$ is a bijection.
(B) Multiplying a number by 1 , gives the number.
(C) All nonzero numbers mod p, have an inverse.
(D) Multiplying a number by 0 gives 0 .
(E) Mutliplying elements of sets A and B together is the same if $A=B$.
(A), (C), and (E)

Fermat and Exponent reducing.

Fermat's Little Theorem: For prime p, and $a \equiv \equiv 0(\bmod p)$,

$$
a^{p-1} \equiv 1(\bmod p)
$$

What is $2^{101}(\bmod 7)$?
Wrong: $2^{101}=2^{7 * 14+3}=2^{3}(\bmod 7)$
Fermat: 2 is relatively prime to $7 . \Longrightarrow 2^{6}=1(\bmod 7)$.
Correct: $2^{101}=2^{6 * 16+5}=2^{5}=32=4(\bmod 7)$.
For a prime modulus, we can reduce exponents modulo $p-1$!

Lecture in a minute.

Extended Euclid: Find a, b where $a x+b y=\operatorname{gcd}(x, y)$.
Idea: compute a, b recursively (euclid), or iteratively. Inverse: $a x+b y=a x=\operatorname{gcd}(x, y)(\bmod y)$.
If $\operatorname{gcd}(x, y)=1$, we have $a x=1(\bmod y)$

$$
\rightarrow a=x^{-1}(\bmod y) .
$$

Fundamental Theorem of Algebra: Unique prime factorization of any natural number.

Claim: any prime that divides a number n, divides a number in any factorization of n.

From Extended Euclid.
Induction.
Chinese Remainder Theorem:
If $\operatorname{gcd}(n, m)=1, x=a(\bmod n), x=b(\bmod m)$ unique sol.
Proof: Find $u=1(\bmod n), u=0(\bmod m)$,

$$
\text { and } v=0(\bmod n), v=1(\bmod m) \text {. }
$$

Then: $x=a u+b v=a(\bmod n) \ldots$

$$
u=m\left(m^{-1}(\bmod n)\right)(\bmod n) \text { works! }
$$

Fermat: Prime $p, a^{p-1}=1(\bmod p)$.
Proof Idea: $f(x)=a(x)(\bmod p)$: bijection on $S=\{1, \ldots, p-1\}$.

