Today

Homework/No-Homework option.

Deadline is set for after Midterm.

Finish Euclid.

Bijection/CRT/Isomorphism.

Fermat's Little Theorem.

Quick review

Review runtime proof.

Runtime Proof.

```
(define (euclid x y)
  (if (= y 0)
         x
         (euclid y (mod x y))))
```

Theorem: (euclid x y) uses O(n) "divisions" where n = b(x).

Proof:

Fact:

First arg decreases by at least factor of two in two recursive calls.

After $2\log_2 x = O(n)$ recursive calls, argument x is 1 bit number. One more recursive call to finish.

1 division per recursive call.

O(n) divisions.

Runtime Proof (continued.)

```
(define (euclid x y)
  (if (= y 0)
          x
        (euclid y (mod x y))))
```

Fact:

First arg decreases by at least factor of two in two recursive calls.

Proof of Fact: Recall that first argument decreases every call.

Case 1: y < x/2, first argument is y

⇒ true in one recursive call;

Case 2: Will show " $y \ge x/2$ " \Longrightarrow " $mod(x,y) \le x/2$."

mod(x,y) is second argument in next recursive call, and becomes the first argument in the next one.

When $y \ge x/2$, then

$$\lfloor \frac{x}{y} \rfloor = 1,$$

 $\text{mod}(x, y) = x - y \lfloor \frac{x}{y} \rfloor = x - y \leq x - x/2 = x/2$

Poll

Mark correct answers.

Note: Mod(x,y) is the remainder of x divided by y and y < x.

- (A) mod(x, y) < y
- (B) If $\operatorname{euclid}(x,y)$ calls $\operatorname{euclid}(u,v)$ calls $\operatorname{euclid}(a,b)$ then a <= x/2.
- (C) euclid(x,y) calls euclid(u,v) means u = y.
- (D) if y > x/2, mod (x, y) = (x y)
- (E) if y > x/2, mod (x, y) < x/2

Finding an inverse?

We showed how to efficiently tell if there is an inverse.

Extend euclid to find inverse.

Euclid's GCD algorithm.

```
(define (euclid x y)
  (if (= y 0)
         x
         (euclid y (mod x y))))
```

Computes the gcd(x, y) in O(n) divisions. (Remember $n = \log_2 x$.) For x and m, if gcd(x, m) = 1 then x has an inverse modulo m.

Multiplicative Inverse.

GCD algorithm used to tell if there is a multiplicative inverse.

How do we **find** a multiplicative inverse?

Extended GCD

Euclid's Extended GCD Theorem: For any x, y there are integers a, b such that

$$ax + by = d$$
 where $d = gcd(x, y)$.

"Make d out of sum of multiples of x and y."

What is multiplicative inverse of x modulo m?

By extended GCD theorem, when gcd(x, m) = 1.

$$ax + bm = 1$$

 $ax \equiv 1 - bm \equiv 1 \pmod{m}$.

So a multiplicative inverse of $x \pmod{m}!!$

Example: For x = 12 and y = 35, gcd(12,35) = 1.

$$(3)12+(-1)35=1.$$

$$a = 3$$
 and $b = -1$.

The multiplicative inverse of 12 (mod 35) is 3.

Check:
$$3(12) = 36 = 1 \pmod{35}$$
.

Make *d* out of multiples of *x* and *y*..?

```
gcd(35,12)
gcd(12, 11) ;; gcd(12, 35%12)
gcd(11, 1) ;; gcd(11, 12%11)
gcd(1,0)
```

How did gcd get 11 from 35 and 12?

$$35 - \lfloor \frac{35}{12} \rfloor 12 = 35 - (2)12 = 11$$

How does gcd get 1 from 12 and 11?

$$12 - \lfloor \frac{12}{11} \rfloor 11 = 12 - (1)11 = 1$$

Algorithm finally returns 1.

But we want 1 from sum of multiples of 35 and 12?

Get 1 from 12 and 11.

$$1 = 12 - (1)11 = 12 - (1)(35 - (2)12) = (3)12 + (-1)35$$

Get 11 from 35 and 12 and plugin.... Simplify. a = 3 and b = -1.

Extended GCD Algorithm.

```
ext-gcd(x, y)
  if v = 0 then return(x, 1, 0)
     else
          (d, a, b) := ext-gcd(y, mod(x,y))
          return (d, b, a - floor(x/y) \star b)
Claim: Returns (d, a, b): d = gcd(a, b) and d = ax + by.
Example: a - |x/y| \cdot b = 1 - 0.111 + 1.23 \cdot 30/11 \cdot 2111 \cdot (-1) = 3
    ext-qcd(35,12)
      ext-qcd(12, 11)
         ext-qcd(11, 1)
           ext-qcd(1,0)
           return (1,1,0);; 1 = (1)1 + (0)0
         return (1,0,1) ;; 1 = (0)11 + (1)1
      return (1,1,-1) ;; 1 = (1)12 + (-1)11
   return (1,-1, 3) ;; 1 = (-1)35 + (3)12
```

Extended GCD Algorithm.

```
ext-gcd(x,y)
  if y = 0 then return(x, 1, 0)
    else
        (d, a, b) := ext-gcd(y, mod(x,y))
        return (d, b, a - floor(x/y) * b)
```

Theorem: Returns (d, a, b), where d = gcd(a, b) and d = ax + by.

Correctness.

Proof: Strong Induction.¹

Base: ext-gcd(x,0) returns (d = x,1,0) with x = (1)x + (0)y.

Induction Step: Returns (d, A, B) with d = Ax + ByInd hyp: **ext-gcd** $(y, \mod (x, y))$ returns (d, a, b) with $d = ay + b(\mod (x, y))$

ext-gcd(x,y) calls ext-gcd(y, mod(x,y)) so

$$d = ay + b \cdot (\mod(x, y))$$

$$= ay + b \cdot (x - \lfloor \frac{x}{y} \rfloor y)$$

$$= bx + (a - \lfloor \frac{x}{y} \rfloor \cdot b)y$$

And ext-gcd returns $(d, b, (a - \lfloor \frac{x}{v} \rfloor \cdot b))$ so theorem holds!

¹Assume *d* is gcd(x, y) by previous proof.

Review Proof: step.

```
ext-gcd(x,y) if y = 0 then return(x, 1, 0) else  (d, a, b) := \text{ext-gcd}(y, \text{mod}(x,y))  return (d, b, a - floor(x/y) * b)  \text{Recursively: } d = ay + b(x - \lfloor \frac{x}{y} \rfloor \cdot y) \implies d = bx - (a - \lfloor \frac{x}{y} \rfloor b)y   \text{Returns}(d,b,(a-\lfloor \frac{x}{y} \rfloor \cdot b)).
```

Hand Calculation Method for Inverses.

Example:
$$gcd(7,60) = 1$$
. $egcd(7,60)$.

$$7(0)+60(1) = 60$$

 $7(1)+60(0) = 7$
 $7(-8)+60(1) = 4$
 $7(9)+60(-1) = 3$
 $7(-17)+60(2) = 1$

Confirm: -119 + 120 = 1

Note: an "iterative" version of the e-gcd algorithm.

Fundamental Theorem of Arithmetic.

Thm: Every natural number can be written as the product of primes.

Proof: *n* is either prime (base cases)

or $n = a \times b$ and a and b can be written as product of primes.

Thm: The prime factorization of n is unique up to reordering.

Fundamental Theorem of Arithmetic: Every natural number can be written as the a unique (up to reordering) product of primes.

Generalization: things with a "division algorithm".

One example: polynomial division.

No shared common factors, and products.

Claim: For $x, y, z \in \mathbb{Z}^+$ with gcd(x, y) = 1 and x|yz then x|z.

Idea: *x* doesn't share common factors with *y* so it must divide *z*.

Euclid: 1 = ax + by.

Observe: $x \mid axz$ and $x \mid byz$ (since $x \mid yz$), and x divides the sum.

 $\implies x | axz + byz$

And axz + byz = z, thus x|z.

Used to prove:

That if gcd(x, m) = 1, then x has multiplicative inverse modulo m. So used Extended Euclid through this lemma.

Used to prove that the prime factorization of a number is unique. Induction: Divide by largest power of a prime. And induct, on remaining.

Wrap-up

```
Conclusion: Can find multiplicative inverses in O(n) time!
Very different from elementary school: try 1, try 2, try 3...
 2n/2
Inverse of 500,000,357 modulo 1,000,000,000,000?
  < 80 divisions.
 versus 1,000,000
Internet Security.
Public Key Cryptography: 512 digits.
 512 divisions vs.
 Internet Security: Soon.
```

Fundamental Theorem of Arithmetic:uniqueness

Thm: The prime factorization of *n* is unique up to reordering.

```
Assume not.
```

```
n = p_1 \cdot p_2 \cdots p_k and n = q_1 \cdot q_2 \cdots q_l.
```

Fact: If $p|q_1...q_l$, then $p=q_i$ for some j.

If
$$gcd(p,q_l) = 1$$
, $\implies p_1|q_1 \cdots q_{l-1}$ by Claim.

If $gcd(p, q_l) = d$, then d is a common factor.

If both prime, both only have 1 and themselves as factors.

Thus, $p = q_l = d$.

End proof of fact.

Proof by induction.

Base case: If l = 1, $p_1 \cdots p_k = q_1$.

But if q_1 is prime, only prime factor is q_1 and $p_1 = q_1$ and l = k = 1.

Induction step: From Fact: $p_1 = q_i$ for some j.

$$n/p_1 = p_2 \dots p_k$$
 and $n/q_i = \prod_{i \neq i} q_i$.

These two expressions are the same up to reordering by induction.

And p_1 is matched to q_i .

Lots of Mods

```
x = 5 \pmod{7} and x = 3 \pmod{5}. What is x \pmod{35}?

Let's try 5. Not 3 \pmod{5}!

Let's try 3. Not 5 \pmod{7}!

If x = 5 \pmod{7}

then x is in \{5,12,19,26,33\}.

Oh, only 33 is 3 \pmod{5}.

Hmmm... only one solution.

A bit slow for large values.
```

Simple Chinese Remainder Theorem.

```
My love is won. Zero and One. Nothing and nothing done.
Find x = a \pmod{m} and x = b \pmod{n} where gcd(m, n) = 1.
CRT Thm: There is a unique solution x \pmod{mn}.
Proof (solution exists):
Consider u = n(n^{-1} \pmod{m}).
 u = 0 \pmod{n} u = 1 \pmod{m}
Consider v = m(m^{-1} \pmod{n}).
  v = 1 \pmod{n} v = 0 \pmod{m}
Let x = au + bv.
 x = a \pmod{m} since bv = 0 \pmod{m} and au = a \pmod{m}
 x = b \pmod{n} since au = 0 \pmod{n} and bv = b \pmod{n}
This shows there is a solution
```

Simple Chinese Remainder Theorem.

```
CRT Thm: There is a unique solution x \pmod{mn}.

Proof (uniqueness): If not, two solutions, x and y.

(x-y) \equiv 0 \pmod{m} and (x-y) \equiv 0 \pmod{n}.

\Rightarrow (x-y) is multiple of m and n

\gcd(m,n) = 1 \Rightarrow \text{no common primes in factorization } m \text{ and } n

\Rightarrow mn|(x-y)

\Rightarrow x-y \geq mn \Rightarrow x,y \notin \{0,\dots,mn-1\}.

Thus, only one solution modulo mn.
```

Poll.

My love is won, Zero and one. Nothing and nothing done.

What is the rhyme saying?

- (A) Multiplying by 1, gives back number. (Does nothing.)
- (B) Adding 0 gives back number. (Does nothing.)
- (C) Rao has gone mad.
- (D) Multiplying by 0, gives 0.
- (E) Adding one does, not too much.

All are (maybe) correct.

- (E) doesn't have to do with the rhyme.
- (C) Recall Polonius:

"Though this be madness, yet there is method in 't."

CRT:isomorphism.

```
For m, n, gcd(m, n) = 1.
```

- $x \mod mn \leftrightarrow x = a \mod m$ and $x = b \mod n$
- $y \mod mn \leftrightarrow y = c \mod m$ and $y = d \mod n$

Also, true that $x + y \mod mn \leftrightarrow a + c \mod m$ and $b + d \mod n$.

Mapping is "isomorphic":

corresponding addition (and multiplication) operations consistent with mapping.

Fermat's Theorem: Reducing Exponents.

Fermat's Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}$$
.

Proof: Consider $S = \{a \cdot 1, \dots, a \cdot (p-1)\}.$

All different modulo p since a has an inverse modulo p. S contains representative of $\{1, \dots, p-1\}$ modulo p.

$$(a\cdot 1)\cdot (a\cdot 2)\cdots (a\cdot (p-1))\equiv 1\cdot 2\cdots (p-1)\mod p,$$

Since multiplication is commutative.

$$a^{(p-1)}(1\cdots(p-1))\equiv (1\cdots(p-1))\mod p.$$

Each of $2, \dots (p-1)$ has an inverse modulo p, solve to get...

$$a^{(p-1)} \equiv 1 \mod p$$
.

Poll

Which was used in Fermat's theorem proof?

- (A) The mapping $f(x) = ax \mod p$ is a bijection.
- (B) Multiplying a number by 1, gives the number.
- (C) All nonzero numbers mod p, have an inverse.
- (D) Multiplying a number by 0 gives 0.
- (E) Mulliplying elements of sets A and B together is the same if A = B.
- (A), (C), and (E)

Fermat and Exponent reducing.

```
Fermat's Little Theorem: For prime p, and a \not\equiv 0 \pmod{p},
```

$$a^{p-1} \equiv 1 \pmod{p}$$
.

What is $2^{101} \pmod{7}$?

Wrong: $2^{101} = 2^{7*14+3} = 2^3 \pmod{7}$

Fermat: 2 is relatively prime to 7. \implies $2^6 = 1 \pmod{7}$.

Correct: $2^{101} = 2^{6*16+5} = 2^5 = 32 = 4 \pmod{7}$.

For a prime modulus, we can reduce exponents modulo p-1!

Lecture in a minute.

Extended Euclid: Find a, b where ax + by = gcd(x, y).

Idea: compute a, b recursively (euclid), or iteratively.

Inverse: $ax + by = ax = gcd(x, y) \pmod{y}$.

If gcd(x,y) = 1, we have $ax = 1 \pmod{y}$

 $\rightarrow a = x^{-1} \pmod{y}$.

Fundamental Theorem of Algebra: Unique prime factorization of any natural number.

Claim: any prime that divides a number n, divides a number in any factorization of n.

From Extended Euclid.

Induction.

Chinese Remainder Theorem:

If gcd(n, m) = 1, $x = a \pmod{n}$, $x = b \pmod{m}$ unique sol.

Proof: Find $u = 1 \pmod{n}$, $u = 0 \pmod{m}$,

and $v = 0 \pmod{n}$, $v = 1 \pmod{m}$. Then: $x = au + bv = a \pmod{n}$...

 $u = m(m^{-1} \pmod{n}) \pmod{n}$ works!

Fermat: Prime p, $a^{p-1} = 1 \pmod{p}$.

Proof Idea: $f(x) = a(x) \pmod{p}$: bijection on $S = \{1, ..., p-1\}$.

28/28