CS70: New Discussion Format

Small group:
Three modes of working.
(A) Individual working.
(B) Pairs working together
(C) Pairs: one works/one forces talking.

Supported by course staff and course volunteers.
Why? It works better for learning.
Evidence:
(1) Experience. (years and years, faculty agree.)
(2) Literature.

Students hate it.
Students happy(in the moment): negatively correlated to learning See marshmallow test. Delayed gratification.

Our job is to have you learn.
We would like you to be "happy" in the moment.
But the result is what is important
Be nice to the TA's. It's not them. It's the profs.

Simple Chinese Remainder Theorem

My love is won. Zero and One. Nothing and nothing done
Find $x=a(\bmod m)$ and $x=b(\bmod n)$ where $\operatorname{gcd}(m, n)=1$.
CRT Thm: There is a unique solution $x(\bmod m n)$.
Proof (solution exists):
Consider $u=n\left(n^{-1}(\bmod m)\right.$).
$u=0(\bmod n) \quad u=1(\bmod m)$
Consider $v=m\left(m^{-1}(\bmod n)\right)$,
$v=1(\bmod n) \quad v=0(\bmod m)$
$a u+b v$
$x=a(\bmod m)$ since $b v=0(\bmod m)$ and $a u=a(\bmod m)$ $x=b(\bmod n)$ since $a u=0(\bmod n)$ and $b v=b(\bmod n)$ This shows there is a solution

Do you remember the first lecture?

Veritassium on Khan

Simple Chinese Remainder Theorem.

CRT Thm: There is a unique solution $x(\bmod m n)$.
Proof (uniqueness):
If not, two solutions, x and y
$(x-y) \equiv 0(\bmod m)$ and $(x-y) \equiv 0(\bmod n)$
$\Longrightarrow(x-y)$ is multiple of m and n
$\operatorname{gcd}(m, n)=1 \Longrightarrow$ no common primes in factorization m and n $\Longrightarrow m n \mid(x-y)$
$\Longrightarrow x-y \geq m n \Longrightarrow x, y \notin\{0, \ldots, m n-1\}$
Thus, only one solution modulo $m n$.

CS70: Lecture 9. Outline.

1. Public Key Cryptography
2. RSA system
2.1 Efficiency: Repeated Squaring.
2.2 Correctness: Fermat's Theorem
2.2 Correctness:
3. Warnings

Isomorphisms.

Bijection:

$f(x)=a x(\bmod m)$ if $\operatorname{gcd}(a, m)=1$.

Simplified Chinese Remainder Theorem:

If $\operatorname{gcd}(n, m)=1$, there is unique $x(\bmod m n)$ where $x=a(\bmod m)$ and $x=b(\bmod n)$
Bijection between $(a(\bmod n), b(\bmod m))$ and $x(\bmod m n)$. Consider $m=5, n=9$, then if $(a, b)=(3,7)$ then $x=43(\bmod 45)$. Consider $\left(a^{\prime}, b^{\prime}\right)=(2,4)$, then $x=22(\bmod 45)$.
Now consider: $\quad(a, b)+\left(a^{\prime}, b^{\prime}\right)=(0,2)$
What is x where $x=0(\bmod 5)$ and $x=2(\bmod 9)$?
Try $43+22=65=20(\bmod 45)$
Is it $0(\bmod 5)$? Yes! Is it $2(\bmod 9)$? Yes!
Isomorphism:
the actions under $(\bmod 5),(\bmod 9)$
correspond to actions in $(\bmod 45)$!

Poll

$x=5 \bmod 7$ and $x=5 \bmod 6$
 $y=4 \bmod 7$ and $y=3 \bmod 6$

What's true?
(A) $x+y=2 \bmod 7$
(B) $x+y=2 \bmod 6$
(C) $x y=3 \bmod 6$
(D) $x y=6 \bmod 7$
(E) $x=5 \bmod 42$
(F) $y=39 \bmod 42$

All true.

Public key crypography.
$m=D(E(m, K), k)$

Everyone knows key K !
Bob (and Eve and me and you and you ...) can encode. Only Alice knows the secret key k for public key K
(Only?) Alice can decode with k
Is this even possible?

Xor

Computer Science:
1 - True
0 - False
$1 \vee 1=1$
$1 \vee 0=1$
$0 \vee 1=1$
$0 \vee 0=0$
$A \oplus B$ - Exclusive or
$1 \oplus 1=0$
$1 \oplus 1=0$
$1 \oplus 0=1$
$1 \oplus 0=1$
$0 \oplus 1=1$
$0 \oplus 0=0$
Note: Also modular addition modulo 2 !
$\{0,1\}$ is set. Take remainder for 2.
Property: $A \oplus B \oplus B=A$.
By cases: $1 \oplus 1 \oplus 1=1$.

Is public key crypto possible?

No. In a sense. One can try every message to "break" system. Too slow. Does it have to be slow? We don't really know
...but we do public-key cryptography constantly!!!
RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let $N=p q$
Pick two large primes p and q. Let $N=p q$.
Compute $d=e^{-1} \bmod (p-1)(q-1)$.
Announce $N(=p \cdot q)$ and $e: K=(N . e)$ is my public key!
Encoding: $\bmod \left(x^{e}, N\right)$.
Decoding: $\bmod \left(y^{d}, N\right)$.
Does $D(E(m))=m^{\text {ed }}=m \bmod N$?
Yes

Cryptography ...

Example:
One-time Pad: secret s is string of length $|m|$.
$m=10101011110101101$

$D(x, s)$ - bitwise $x \oplus s$.
Works because $m \oplus \boldsymbol{s} \oplus \boldsymbol{s}=m$
.and totally secure!
...given $E(m, s)$ any message m is equally likely
Disadvantages:
Shared secret!
Uses up one time pad..or less and less secure.

Poll

What is a piece of RSA ?

Bob has a key ($\mathrm{N}, \mathrm{e}, \mathrm{d}$). Alice is good, Eve is evil

A) Eve knows e and N.
B) Alice knows e and N.
C) $e d=1(\bmod N-1)$
but can still decode?
(E) Bob knows d
F) $e d=1(\bmod (p-1)(q-1))$ if $N=p q$.
(A), (B), (D), (E), (F)

Iterative Extended GCD.

Example: $p=7, q=11$.
$N=77$.
$(p-1)(q-1)=60$
Choose $e=7$, since $\operatorname{gcd}(7,60)=1$.
$\operatorname{egcd}(7,60)$.

$$
\begin{aligned}
7(0)+60(1) & =60 \\
7(1)+60(0) & =7 \\
7(-8)+60(1) & =4 \\
7(9)+60(-1) & =3 \\
7(-17)+60(2) & =1
\end{aligned}
$$

Confirm: $-119+120=1$

$$
d=e^{-1}=-17=43=(\bmod 60)
$$

Repeated Squaring: x^{y}

Repeated squaring $O(\log y)$ multiplications versus $y!!!$

$$
\text { 1. } x^{y}: \text { Compute } x^{1}, x^{2}, x^{4}, \ldots, x^{2 \log y]} .
$$

2. Multiply together x^{i} where the $(\log (i))$ th bit of y (in binary) is 1 . Example: $43=101011$ in binary.

$$
\begin{aligned}
& 13=101011 \text { in binary. } \\
& x^{43}=x^{32} * x^{8} * x^{2} * x^{1} .
\end{aligned}
$$

Modular Exponentiation: $x^{y} \bmod N$. All n-bit numbers. Repeated Squaring:
$O(n)$ multiplications.
$O\left(n^{2}\right)$ time per multiplication.
$\Longrightarrow O\left(n^{3}\right)$ time.
Conclusion: $x^{y} \bmod N$ takes $O\left(n^{3}\right)$ time.

Encryption/Decryption Techniques.

Public Key: $(77,7)$
Message Choices: $\{0, \ldots, 76\}$.
Message: 2!
$E(2)=2^{e}=2^{7} \equiv 128=51(\bmod 77)$
$D(51)=51^{43}(\bmod 77)$
uh oh!
Obvious way: 43 multiplications. Ouch.
In general, $O(N)$ or $O\left(2^{n}\right)$ multiplications!

Recursive.

x^{y}.
xiseven, $x=2 k, x^{y}=x^{2 k}=\left(x^{2}\right)^{k}$.
power $(\mathrm{x}, \mathrm{y})=\operatorname{power}\left(x^{2}, y / 2\right)$.
xisodd, $x=2 k+!, x^{y}=x^{2 k}=\left(x^{2}\right)^{k}$.
power (x, y) $=\mathrm{x}^{*}$ power $\left(x^{2}, y / 2\right)$.
Base case: $x^{0}=1$.

Repeated squaring.

Notice: $43=32+8+2+1$ or 101011 in binary.
Notice: $43=32+8+2+1$ or 101011 in binary.
$51^{43}=51^{32+8+2+1}=51^{32} \cdot 51^{8} \cdot 51^{2} \cdot 51^{1}(\bmod 77)$
$51^{43}=51^{32+8+2+1}=51$
3 multiplications sort of...
3 multiplications sort of...
Need to compute $51^{32} \ldots 51^{1}$?
$51^{1} \equiv 51(\bmod 77)$
$51 \equiv 51(\bmod 77)$
$51^{2}=(51) *(51)=2601 \equiv 60(\bmod 77)$
$51^{2}=(51) *(51)=2601 \equiv 60(\bmod 77)$
$51^{4}=\left(51^{2}\right) *\left(51^{2}\right)=60 * 60=3600 \equiv 58(\bmod 77)$
$51^{4}=\left(51^{2}\right) *\left(51^{2}\right)=60 * 60=3600 \equiv 58(\bmod 77)$
$51^{8}=\left(51^{4}\right) *\left(51^{4}\right)=58 * 58=3364 \equiv 53(\bmod 77)$
$51^{8}=\left(51^{4}\right) *\left(51^{4}\right)=58 * 58=3364 \equiv 53(\bmod 77)$
$51^{16}=\left(51^{8}\right) *\left(51^{8}\right)=53 * 53=2809 \equiv 37(\bmod 77)$ $51^{32}=\left(51^{16}\right) *\left(51^{16}\right)=37 * 37=1369 \equiv 60(\bmod 77)$
5 more multiplications.
$51^{32} \cdot 51^{8} \cdot 51^{2} \cdot 51^{1}=(60) *(53) *(60) *(51) \equiv 2(\bmod 77)$.
Decoding got the message back!
Repeated Squaring took 8 multiplications versus 42.

RSA is pretty fast.

Modular Exponentiation: $x^{y} \bmod N$. All n-bit numbers. $O\left(n^{3}\right)$ time.
Remember RSA encoding/decoding!
$E(m,(N, e))=m^{e}(\bmod N)$.
$D(m,(N, d))=m^{d}(\bmod N)$.
For 512 bits, a few hundred million operations. Easy, peasey.

Decoding

$E(m,(N, e))=m^{e}(\bmod N)$
$D(m,(N, d))=m^{d}(\bmod N)$.
$N=p q$ and $d=e^{-1}(\bmod (p-1)(q-1))$
Want: $\left(m^{e}\right)^{d}=m^{e d}=m(\bmod N)$.

Poll

Mark what is true.
(A) $2^{7}=1 \bmod 7$
(B) $2^{6}=1 \bmod 7$
(C) $2^{1}, 2^{2}, 2^{3}, 2^{4}, 2^{5}, 2^{6}, 2^{7}$ are distinct $\bmod 7$
(D) $2^{1}, 2^{2}, 2^{3}, 2^{4}, 2^{5}, 2^{6}$ are distinct $\bmod 7$
(E) $2^{15}=2 \bmod 7$
(F) $2^{15}=1 \bmod 7$
(B), (F)

Always decode correctly?

$E(m,(N, e))=m^{e}(\bmod N)$
$D(m,(N, d))=m^{d}(\bmod N)$
$N=p q$ and $d=e^{-1}(\bmod (p-1)(q-1))$.
Want: $\left(m^{e}\right)^{d}=m^{e d}=m(\bmod N)$
Another view:

$$
d=e^{-1}(\bmod (p-1)(q-1)) \Longleftrightarrow e d=k(p-1)(q-1)+1
$$

Consider...

Fermat's Little Theorem: For prime p, and $a \neq 0(\bmod p)$,

$a^{p-1} \equiv 1(\bmod p)$.

$\Longrightarrow a^{k(p-1)} \equiv 1(\bmod p) \Longrightarrow a^{k(p-1)+1}=a(\bmod p)$
versus $\quad a^{k(p-1)(q-1)+1}=a(\bmod p q)$.
Similar, not same, but useful

Always decode correctly? (cont.)

Fermat's Little Theorem: For prime p, and $a \equiv 0(\bmod p)$,

$$
a^{p-1} \equiv 1 \quad(\bmod p) .
$$

Lemma 1: For any prime p and any a, b
$a^{1+b(p-1)} \equiv a(\bmod p)$
Proof: If $a \equiv 0(\bmod p)$, of course.
Otherwis
$a^{1+b(p-1)} \equiv a^{1} *\left(a^{p-1}\right)^{b} \equiv a *(1)^{b} \equiv a(\bmod p)$

Correct decoding..

Fermat's Little Theorem: For prime p, and $a \equiv 0(\bmod p)$
$a^{p-1} \equiv 1(\bmod p)$.
Proof: Consider $S=\{a \cdot 1, \ldots, a \cdot(p-1)\}$
All different modulo p since a has an inverse modulo p.
S contains representative of $\{1, \ldots, p-1\}$ modulo p.

$$
(a \cdot 1) \cdot(a \cdot 2) \cdots(a \cdot(p-1)) \equiv 1 \cdot 2 \cdots(p-1) \bmod p,
$$ Since multiplication is commutative

$$
a^{(p-1)}(1 \cdots(p-1)) \equiv(1 \cdots(p-1)) \quad \bmod p .
$$

Each of $2, \ldots(p-1)$ has an inverse modulo p, solve to get...

$$
a^{(p-1)} \equiv 1 \quad \bmod p .
$$

...Decoding correctness...

Lemma 1: For any prime p and any a, b,
$a^{1+b(p-1)} \equiv a(\bmod p)$
Lemma 2: For any two different primes p, q and any x, k, $x^{1+k(p-1)(q-1)} \equiv x(\bmod p q)$
Proof:
Let $a=x, b=k(p-1)$ and apply Lemma 1 with modulus q $x^{1+k(p-1)(q-1)} \equiv x(\bmod q)$
Let $a=x, b=k(q-1)$ and apply Lemma 1 with modulus p. $x^{1+k(p-1)(q-1)} \equiv x(\bmod p) x^{1+k(q-1)(p-1)}-x$ is multiple of p and q.
$x^{1+k(q-1)(p-1)}-x \equiv 0 \bmod (p q) \Longrightarrow x^{1+k(q-1)(p-1)}=x \bmod p q$.
From CRT: $y=x(\bmod p)$ and $y=x(\bmod q) \Longrightarrow y=x$.

RSA decodes correctly..

Lemma 2: For any two different primes p, q and any x, k $x^{1+k(p-1)(q-1)} \equiv x(\bmod p q)$
Theorem: RSA correctly decodes! Recall

$$
D(E(x))=\left(x^{e}\right)^{d}=x^{e d} \equiv x \quad(\bmod p q),
$$

where $e d \equiv 1 \bmod (p-1)(q-1) \Longrightarrow e d=1+k(p-1)(q-1)$

$$
x^{e d} \equiv x^{k(p-1)(q-1)+1} \equiv x \quad(\bmod p q) .
$$

Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,
Eve sees it.
Eve can send credit card again!!
The protocols are built on RSA but more complicated;
For example, several rounds of challenge/response.
One trick:
Bob encodes credit card number, c, concatenated with random k-bit number r.
Never sends just c.
Again, more work to do to get entire system
CS161...

Construction of keys.. .

1. Find large (100 digit) primes p and q ?

Prime Number Theorem: $\pi(N)$ number of primes less than N.For all $N>17$

$$
\pi(N) \geq N / \ln N .
$$

Choosing randomly gives approximately $1 /(\ln N)$ chance of number being a prime. (How do you tell if it is prime? .. cs170..Miller-Rabin test.. Primes in P)
For 1024 bit number, 1 in 710 is prime
2. Choose e with $\operatorname{gcd}(e,(p-1)(q-1))=1$. Use god algorithm to test.
3. Find inverse d of e modulo $(p-1)(q-1)$. Use extended gcd algorithm.
All steps are polynomial in $O(\log N)$, the number of bits.

Signatures using RSA.

```
\(\left[C, S_{v}(C)\right] \quad\) Verisign: \(k_{v}, K_{v} \quad C=E\left(S_{V}(C), k_{V}\right)\) ?
    \(\left[C, S_{v}(C)\right] \quad\left[C, S_{v}(C)\right]\)
    Amazon \(\longleftrightarrow\) Browser. \(K_{V}\)
```

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign's key: $K_{V}=(N, e)$ and $k_{V}=d(N=p q$.)
Browser "knows" Verisign's public key: K_{V}.
Amazon Certificate: $C=$ "I am Amazon. My public Key is K_{A}."
Versign signature of $C: S_{v}(C): D\left(C, k_{v}\right)=C^{d} \bmod N$.
Browser receives: $[C, y]$
Checks $E\left(y, K_{V}\right)=C$?
$E\left(S_{v}(C), K_{V}\right)=\left(S_{V}(C)\right)^{e}=\left(C^{d}\right)^{e}=C^{d e}=C(\bmod N)$
Valid signature of Amazon certificate C !
Security: Eve can't forge unless she "breaks" RSA scheme

Security of RSA.

Security?

1. Alice knows p and q
2. Bob only knows, $N(=p q)$, and e.

Does not know, for example, d or factorization of N.
3. I don't know how to break this scheme without factoring N.

No one I know or have heard of admits to knowing how to factor N. Breaking in general sense \Longrightarrow factoring algorithm

RSA

Public Key Cryptography:
$D(E(m, K), k)=\left(m^{e}\right)^{d} \bmod N=m$.
Signature scheme:
$E(D(C, k), K)=\left(C^{d}\right)^{e} \bmod N=C$

Signature authority has public key (\mathbf{N}, e).

(A) Given message/signature (x, y) : check $y^{d}=x(\bmod N)$ (B) Given message/signature (x, y) : check $y^{e}=x(\bmod N)$ od N (D) Signature of message x is $x^{d}(\bmod N)$
\qquad
\square

Other Eve.

Get CA to certify fake certificates: Microsoft Corporation 2001..Doh.
... and August 28, 2011 announcement.
DigiNotar Certificate issued for Microsoft!!!
How does Microsoft get a CA to issue certificate to them ... and only them?

Summary.

Public-Key Encryption

RSA Scheme:
$N=p q$ and $d=e^{-1}(\bmod (p-1)(q-1))$.
$E(x)=x^{e}(\bmod N)$
$D(y)=y^{d}(\bmod N)$.
Repeated Squaring \Longrightarrow efficiency.
Fermat's Theorem \Longrightarrow correctness.
Good for Encryption and Signature Schemes

